| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispconn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | unieq | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  ∪  𝐽 ) | 
						
							| 3 | 2 1 | eqtr4di | ⊢ ( 𝑗  =  𝐽  →  ∪  𝑗  =  𝑋 ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑗  =  𝐽  →  ( II  Cn  𝑗 )  =  ( II  Cn  𝐽 ) ) | 
						
							| 5 | 4 | rexeqdv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 6 | 3 5 | raleqbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝑋 ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 7 | 3 6 | raleqbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∀ 𝑥  ∈  ∪  𝑗 ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 8 |  | df-pconn | ⊢ PConn  =  { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } | 
						
							| 9 | 7 8 | elrab2 | ⊢ ( 𝐽  ∈  PConn  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∃ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) |