Metamath Proof Explorer


Theorem ispconn

Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis ispconn.1 X = J
Assertion ispconn J PConn J Top x X y X f II Cn J f 0 = x f 1 = y

Proof

Step Hyp Ref Expression
1 ispconn.1 X = J
2 unieq j = J j = J
3 2 1 eqtr4di j = J j = X
4 oveq2 j = J II Cn j = II Cn J
5 4 rexeqdv j = J f II Cn j f 0 = x f 1 = y f II Cn J f 0 = x f 1 = y
6 3 5 raleqbidv j = J y j f II Cn j f 0 = x f 1 = y y X f II Cn J f 0 = x f 1 = y
7 3 6 raleqbidv j = J x j y j f II Cn j f 0 = x f 1 = y x X y X f II Cn J f 0 = x f 1 = y
8 df-pconn PConn = j Top | x j y j f II Cn j f 0 = x f 1 = y
9 7 8 elrab2 J PConn J Top x X y X f II Cn J f 0 = x f 1 = y