| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpconn | ⊢ PConn | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 | 1 | cv | ⊢ 𝑗 | 
						
							| 5 | 4 | cuni | ⊢ ∪  𝑗 | 
						
							| 6 |  | vy | ⊢ 𝑦 | 
						
							| 7 |  | vf | ⊢ 𝑓 | 
						
							| 8 |  | cii | ⊢ II | 
						
							| 9 |  | ccn | ⊢  Cn | 
						
							| 10 | 8 4 9 | co | ⊢ ( II  Cn  𝑗 ) | 
						
							| 11 | 7 | cv | ⊢ 𝑓 | 
						
							| 12 |  | cc0 | ⊢ 0 | 
						
							| 13 | 12 11 | cfv | ⊢ ( 𝑓 ‘ 0 ) | 
						
							| 14 | 3 | cv | ⊢ 𝑥 | 
						
							| 15 | 13 14 | wceq | ⊢ ( 𝑓 ‘ 0 )  =  𝑥 | 
						
							| 16 |  | c1 | ⊢ 1 | 
						
							| 17 | 16 11 | cfv | ⊢ ( 𝑓 ‘ 1 ) | 
						
							| 18 | 6 | cv | ⊢ 𝑦 | 
						
							| 19 | 17 18 | wceq | ⊢ ( 𝑓 ‘ 1 )  =  𝑦 | 
						
							| 20 | 15 19 | wa | ⊢ ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 21 | 20 7 10 | wrex | ⊢ ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 22 | 21 6 5 | wral | ⊢ ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 23 | 22 3 5 | wral | ⊢ ∀ 𝑥  ∈  ∪  𝑗 ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 24 | 23 1 2 | crab | ⊢ { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } | 
						
							| 25 | 0 24 | wceq | ⊢ PConn  =  { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  ∪  𝑗 ∀ 𝑦  ∈  ∪  𝑗 ∃ 𝑓  ∈  ( II  Cn  𝑗 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) } |