Metamath Proof Explorer


Definition df-pconn

Description: Define the class of path-connected topologies. A topology is path-connected if there is a path (a continuous function from the closed unit interval) that goes from x to y for any points x , y in the space. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-pconn
|- PConn = { j e. Top | A. x e. U. j A. y e. U. j E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpconn
 |-  PConn
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 vy
 |-  y
7 vf
 |-  f
8 cii
 |-  II
9 ccn
 |-  Cn
10 8 4 9 co
 |-  ( II Cn j )
11 7 cv
 |-  f
12 cc0
 |-  0
13 12 11 cfv
 |-  ( f ` 0 )
14 3 cv
 |-  x
15 13 14 wceq
 |-  ( f ` 0 ) = x
16 c1
 |-  1
17 16 11 cfv
 |-  ( f ` 1 )
18 6 cv
 |-  y
19 17 18 wceq
 |-  ( f ` 1 ) = y
20 15 19 wa
 |-  ( ( f ` 0 ) = x /\ ( f ` 1 ) = y )
21 20 7 10 wrex
 |-  E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y )
22 21 6 5 wral
 |-  A. y e. U. j E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y )
23 22 3 5 wral
 |-  A. x e. U. j A. y e. U. j E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y )
24 23 1 2 crab
 |-  { j e. Top | A. x e. U. j A. y e. U. j E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) }
25 0 24 wceq
 |-  PConn = { j e. Top | A. x e. U. j A. y e. U. j E. f e. ( II Cn j ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) }