Step |
Hyp |
Ref |
Expression |
0 |
|
csconn |
|- SConn |
1 |
|
vj |
|- j |
2 |
|
cpconn |
|- PConn |
3 |
|
vf |
|- f |
4 |
|
cii |
|- II |
5 |
|
ccn |
|- Cn |
6 |
1
|
cv |
|- j |
7 |
4 6 5
|
co |
|- ( II Cn j ) |
8 |
3
|
cv |
|- f |
9 |
|
cc0 |
|- 0 |
10 |
9 8
|
cfv |
|- ( f ` 0 ) |
11 |
|
c1 |
|- 1 |
12 |
11 8
|
cfv |
|- ( f ` 1 ) |
13 |
10 12
|
wceq |
|- ( f ` 0 ) = ( f ` 1 ) |
14 |
|
cphtpc |
|- ~=ph |
15 |
6 14
|
cfv |
|- ( ~=ph ` j ) |
16 |
|
cicc |
|- [,] |
17 |
9 11 16
|
co |
|- ( 0 [,] 1 ) |
18 |
10
|
csn |
|- { ( f ` 0 ) } |
19 |
17 18
|
cxp |
|- ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) |
20 |
8 19 15
|
wbr |
|- f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) |
21 |
13 20
|
wi |
|- ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
22 |
21 3 7
|
wral |
|- A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
23 |
22 1 2
|
crab |
|- { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } |
24 |
0 23
|
wceq |
|- SConn = { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } |