Metamath Proof Explorer


Definition df-sconn

Description: Define the class of simply connected topologies. A topology is simply connected if it is path-connected and every loop (continuous path with identical start and endpoint) is contractible to a point (path-homotopic to a constant function). (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-sconn
|- SConn = { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csconn
 |-  SConn
1 vj
 |-  j
2 cpconn
 |-  PConn
3 vf
 |-  f
4 cii
 |-  II
5 ccn
 |-  Cn
6 1 cv
 |-  j
7 4 6 5 co
 |-  ( II Cn j )
8 3 cv
 |-  f
9 cc0
 |-  0
10 9 8 cfv
 |-  ( f ` 0 )
11 c1
 |-  1
12 11 8 cfv
 |-  ( f ` 1 )
13 10 12 wceq
 |-  ( f ` 0 ) = ( f ` 1 )
14 cphtpc
 |-  ~=ph
15 6 14 cfv
 |-  ( ~=ph ` j )
16 cicc
 |-  [,]
17 9 11 16 co
 |-  ( 0 [,] 1 )
18 10 csn
 |-  { ( f ` 0 ) }
19 17 18 cxp
 |-  ( ( 0 [,] 1 ) X. { ( f ` 0 ) } )
20 8 19 15 wbr
 |-  f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } )
21 13 20 wi
 |-  ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) )
22 21 3 7 wral
 |-  A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) )
23 22 1 2 crab
 |-  { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) }
24 0 23 wceq
 |-  SConn = { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) }