| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csconn |
|- SConn |
| 1 |
|
vj |
|- j |
| 2 |
|
cpconn |
|- PConn |
| 3 |
|
vf |
|- f |
| 4 |
|
cii |
|- II |
| 5 |
|
ccn |
|- Cn |
| 6 |
1
|
cv |
|- j |
| 7 |
4 6 5
|
co |
|- ( II Cn j ) |
| 8 |
3
|
cv |
|- f |
| 9 |
|
cc0 |
|- 0 |
| 10 |
9 8
|
cfv |
|- ( f ` 0 ) |
| 11 |
|
c1 |
|- 1 |
| 12 |
11 8
|
cfv |
|- ( f ` 1 ) |
| 13 |
10 12
|
wceq |
|- ( f ` 0 ) = ( f ` 1 ) |
| 14 |
|
cphtpc |
|- ~=ph |
| 15 |
6 14
|
cfv |
|- ( ~=ph ` j ) |
| 16 |
|
cicc |
|- [,] |
| 17 |
9 11 16
|
co |
|- ( 0 [,] 1 ) |
| 18 |
10
|
csn |
|- { ( f ` 0 ) } |
| 19 |
17 18
|
cxp |
|- ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) |
| 20 |
8 19 15
|
wbr |
|- f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) |
| 21 |
13 20
|
wi |
|- ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
| 22 |
21 3 7
|
wral |
|- A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
| 23 |
22 1 2
|
crab |
|- { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } |
| 24 |
0 23
|
wceq |
|- SConn = { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } |