| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csconn |  |-  SConn | 
						
							| 1 |  | vj |  |-  j | 
						
							| 2 |  | cpconn |  |-  PConn | 
						
							| 3 |  | vf |  |-  f | 
						
							| 4 |  | cii |  |-  II | 
						
							| 5 |  | ccn |  |-  Cn | 
						
							| 6 | 1 | cv |  |-  j | 
						
							| 7 | 4 6 5 | co |  |-  ( II Cn j ) | 
						
							| 8 | 3 | cv |  |-  f | 
						
							| 9 |  | cc0 |  |-  0 | 
						
							| 10 | 9 8 | cfv |  |-  ( f ` 0 ) | 
						
							| 11 |  | c1 |  |-  1 | 
						
							| 12 | 11 8 | cfv |  |-  ( f ` 1 ) | 
						
							| 13 | 10 12 | wceq |  |-  ( f ` 0 ) = ( f ` 1 ) | 
						
							| 14 |  | cphtpc |  |-  ~=ph | 
						
							| 15 | 6 14 | cfv |  |-  ( ~=ph ` j ) | 
						
							| 16 |  | cicc |  |-  [,] | 
						
							| 17 | 9 11 16 | co |  |-  ( 0 [,] 1 ) | 
						
							| 18 | 10 | csn |  |-  { ( f ` 0 ) } | 
						
							| 19 | 17 18 | cxp |  |-  ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) | 
						
							| 20 | 8 19 15 | wbr |  |-  f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) | 
						
							| 21 | 13 20 | wi |  |-  ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 22 | 21 3 7 | wral |  |-  A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) | 
						
							| 23 | 22 1 2 | crab |  |-  { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } | 
						
							| 24 | 0 23 | wceq |  |-  SConn = { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } |