| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csconn |
⊢ SConn |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
cpconn |
⊢ PConn |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
cii |
⊢ II |
| 5 |
|
ccn |
⊢ Cn |
| 6 |
1
|
cv |
⊢ 𝑗 |
| 7 |
4 6 5
|
co |
⊢ ( II Cn 𝑗 ) |
| 8 |
3
|
cv |
⊢ 𝑓 |
| 9 |
|
cc0 |
⊢ 0 |
| 10 |
9 8
|
cfv |
⊢ ( 𝑓 ‘ 0 ) |
| 11 |
|
c1 |
⊢ 1 |
| 12 |
11 8
|
cfv |
⊢ ( 𝑓 ‘ 1 ) |
| 13 |
10 12
|
wceq |
⊢ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) |
| 14 |
|
cphtpc |
⊢ ≃ph |
| 15 |
6 14
|
cfv |
⊢ ( ≃ph ‘ 𝑗 ) |
| 16 |
|
cicc |
⊢ [,] |
| 17 |
9 11 16
|
co |
⊢ ( 0 [,] 1 ) |
| 18 |
10
|
csn |
⊢ { ( 𝑓 ‘ 0 ) } |
| 19 |
17 18
|
cxp |
⊢ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
| 20 |
8 19 15
|
wbr |
⊢ 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
| 21 |
13 20
|
wi |
⊢ ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
| 22 |
21 3 7
|
wral |
⊢ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
| 23 |
22 1 2
|
crab |
⊢ { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) } |
| 24 |
0 23
|
wceq |
⊢ SConn = { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) } |