Metamath Proof Explorer


Definition df-sconn

Description: Define the class of simply connected topologies. A topology is simply connected if it is path-connected and every loop (continuous path with identical start and endpoint) is contractible to a point (path-homotopic to a constant function). (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-sconn SConn = { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csconn SConn
1 vj 𝑗
2 cpconn PConn
3 vf 𝑓
4 cii II
5 ccn Cn
6 1 cv 𝑗
7 4 6 5 co ( II Cn 𝑗 )
8 3 cv 𝑓
9 cc0 0
10 9 8 cfv ( 𝑓 ‘ 0 )
11 c1 1
12 11 8 cfv ( 𝑓 ‘ 1 )
13 10 12 wceq ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 )
14 cphtpc ph
15 6 14 cfv ( ≃ph𝑗 )
16 cicc [,]
17 9 11 16 co ( 0 [,] 1 )
18 10 csn { ( 𝑓 ‘ 0 ) }
19 17 18 cxp ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } )
20 8 19 15 wbr 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } )
21 13 20 wi ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) )
22 21 3 7 wral 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) )
23 22 1 2 crab { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) }
24 0 23 wceq SConn = { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) }