Step |
Hyp |
Ref |
Expression |
0 |
|
csconn |
⊢ SConn |
1 |
|
vj |
⊢ 𝑗 |
2 |
|
cpconn |
⊢ PConn |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cii |
⊢ II |
5 |
|
ccn |
⊢ Cn |
6 |
1
|
cv |
⊢ 𝑗 |
7 |
4 6 5
|
co |
⊢ ( II Cn 𝑗 ) |
8 |
3
|
cv |
⊢ 𝑓 |
9 |
|
cc0 |
⊢ 0 |
10 |
9 8
|
cfv |
⊢ ( 𝑓 ‘ 0 ) |
11 |
|
c1 |
⊢ 1 |
12 |
11 8
|
cfv |
⊢ ( 𝑓 ‘ 1 ) |
13 |
10 12
|
wceq |
⊢ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) |
14 |
|
cphtpc |
⊢ ≃ph |
15 |
6 14
|
cfv |
⊢ ( ≃ph ‘ 𝑗 ) |
16 |
|
cicc |
⊢ [,] |
17 |
9 11 16
|
co |
⊢ ( 0 [,] 1 ) |
18 |
10
|
csn |
⊢ { ( 𝑓 ‘ 0 ) } |
19 |
17 18
|
cxp |
⊢ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
20 |
8 19 15
|
wbr |
⊢ 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
21 |
13 20
|
wi |
⊢ ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
22 |
21 3 7
|
wral |
⊢ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
23 |
22 1 2
|
crab |
⊢ { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) } |
24 |
0 23
|
wceq |
⊢ SConn = { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) } |