Step |
Hyp |
Ref |
Expression |
1 |
|
ispconn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
ispconn |
⊢ ( 𝐽 ∈ PConn ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐽 ∈ PConn → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) |
4 |
|
eqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑓 ‘ 0 ) = 𝑥 ↔ ( 𝑓 ‘ 0 ) = 𝐴 ) ) |
5 |
4
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
7 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑓 ‘ 1 ) = 𝑦 ↔ ( 𝑓 ‘ 1 ) = 𝐵 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) |
10 |
6 9
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) |
11 |
3 10
|
syl5com |
⊢ ( 𝐽 ∈ PConn → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) ) |
12 |
11
|
3impib |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝐴 ∧ ( 𝑓 ‘ 1 ) = 𝐵 ) ) |