Step |
Hyp |
Ref |
Expression |
1 |
|
ispconn.1 |
|- X = U. J |
2 |
1
|
ispconn |
|- ( J e. PConn <-> ( J e. Top /\ A. x e. X A. y e. X E. f e. ( II Cn J ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) ) ) |
3 |
2
|
simprbi |
|- ( J e. PConn -> A. x e. X A. y e. X E. f e. ( II Cn J ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) ) |
4 |
|
eqeq2 |
|- ( x = A -> ( ( f ` 0 ) = x <-> ( f ` 0 ) = A ) ) |
5 |
4
|
anbi1d |
|- ( x = A -> ( ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) <-> ( ( f ` 0 ) = A /\ ( f ` 1 ) = y ) ) ) |
6 |
5
|
rexbidv |
|- ( x = A -> ( E. f e. ( II Cn J ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) <-> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = y ) ) ) |
7 |
|
eqeq2 |
|- ( y = B -> ( ( f ` 1 ) = y <-> ( f ` 1 ) = B ) ) |
8 |
7
|
anbi2d |
|- ( y = B -> ( ( ( f ` 0 ) = A /\ ( f ` 1 ) = y ) <-> ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) |
9 |
8
|
rexbidv |
|- ( y = B -> ( E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = y ) <-> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) |
10 |
6 9
|
rspc2v |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X E. f e. ( II Cn J ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) -> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) |
11 |
3 10
|
syl5com |
|- ( J e. PConn -> ( ( A e. X /\ B e. X ) -> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) ) |
12 |
11
|
3impib |
|- ( ( J e. PConn /\ A e. X /\ B e. X ) -> E. f e. ( II Cn J ) ( ( f ` 0 ) = A /\ ( f ` 1 ) = B ) ) |