Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pconntop | |- ( J e. PConn -> J e. Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- U. J = U. J |
|
2 | 1 | ispconn | |- ( J e. PConn <-> ( J e. Top /\ A. x e. U. J A. y e. U. J E. f e. ( II Cn J ) ( ( f ` 0 ) = x /\ ( f ` 1 ) = y ) ) ) |
3 | 2 | simplbi | |- ( J e. PConn -> J e. Top ) |