Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = J -> ( II Cn j ) = ( II Cn J ) ) |
2 |
|
fveq2 |
|- ( j = J -> ( ~=ph ` j ) = ( ~=ph ` J ) ) |
3 |
2
|
breqd |
|- ( j = J -> ( f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) <-> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) |
4 |
3
|
imbi2d |
|- ( j = J -> ( ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) <-> ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) |
5 |
1 4
|
raleqbidv |
|- ( j = J -> ( A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) <-> A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) |
6 |
|
df-sconn |
|- SConn = { j e. PConn | A. f e. ( II Cn j ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` j ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) } |
7 |
5 6
|
elrab2 |
|- ( J e. SConn <-> ( J e. PConn /\ A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) |