Metamath Proof Explorer


Theorem issconn

Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion issconn JSConnJPConnfIICnJf0=f1fphJ01×f0

Proof

Step Hyp Ref Expression
1 oveq2 j=JIICnj=IICnJ
2 fveq2 j=Jphj=phJ
3 2 breqd j=Jfphj01×f0fphJ01×f0
4 3 imbi2d j=Jf0=f1fphj01×f0f0=f1fphJ01×f0
5 1 4 raleqbidv j=JfIICnjf0=f1fphj01×f0fIICnJf0=f1fphJ01×f0
6 df-sconn SConn=jPConn|fIICnjf0=f1fphj01×f0
7 5 6 elrab2 JSConnJPConnfIICnJf0=f1fphJ01×f0