Metamath Proof Explorer


Theorem issconn

Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion issconn ( 𝐽 ∈ SConn ↔ ( 𝐽 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑗 = 𝐽 → ( II Cn 𝑗 ) = ( II Cn 𝐽 ) )
2 fveq2 ( 𝑗 = 𝐽 → ( ≃ph𝑗 ) = ( ≃ph𝐽 ) )
3 2 breqd ( 𝑗 = 𝐽 → ( 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ↔ 𝑓 ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) )
4 3 imbi2d ( 𝑗 = 𝐽 → ( ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ↔ ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) )
5 1 4 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ↔ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) )
6 df-sconn SConn = { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) }
7 5 6 elrab2 ( 𝐽 ∈ SConn ↔ ( 𝐽 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) )