Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( II Cn 𝑗 ) = ( II Cn 𝐽 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( ≃ph ‘ 𝑗 ) = ( ≃ph ‘ 𝐽 ) ) |
3 |
2
|
breqd |
⊢ ( 𝑗 = 𝐽 → ( 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ↔ 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ↔ ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |
5 |
1 4
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ↔ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |
6 |
|
df-sconn |
⊢ SConn = { 𝑗 ∈ PConn ∣ ∀ 𝑓 ∈ ( II Cn 𝑗 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝑗 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) } |
7 |
5 6
|
elrab2 |
⊢ ( 𝐽 ∈ SConn ↔ ( 𝐽 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |