Description: A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sconnpconn | ⊢ ( 𝐽 ∈ SConn → 𝐽 ∈ PConn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn | ⊢ ( 𝐽 ∈ SConn ↔ ( 𝐽 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐽 ∈ SConn → 𝐽 ∈ PConn ) |