Metamath Proof Explorer


Theorem sconntop

Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion sconntop ( 𝐽 ∈ SConn → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 sconnpconn ( 𝐽 ∈ SConn → 𝐽 ∈ PConn )
2 pconntop ( 𝐽 ∈ PConn → 𝐽 ∈ Top )
3 1 2 syl ( 𝐽 ∈ SConn → 𝐽 ∈ Top )