Step |
Hyp |
Ref |
Expression |
1 |
|
issconn |
⊢ ( 𝐽 ∈ SConn ↔ ( 𝐽 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |
2 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ↔ ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) ) |
5 |
|
id |
⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) |
6 |
2
|
sneqd |
⊢ ( 𝑓 = 𝐹 → { ( 𝑓 ‘ 0 ) } = { ( 𝐹 ‘ 0 ) } ) |
7 |
6
|
xpeq2d |
⊢ ( 𝑓 = 𝐹 → ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |
8 |
5 7
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ↔ 𝐹 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) |
9 |
4 8
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ↔ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → 𝐹 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) ) |
10 |
9
|
rspccv |
⊢ ( ∀ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) → ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → 𝐹 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) ) |
11 |
1 10
|
simplbiim |
⊢ ( 𝐽 ∈ SConn → ( 𝐹 ∈ ( II Cn 𝐽 ) → ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → 𝐹 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) ) ) |
12 |
11
|
3imp |
⊢ ( ( 𝐽 ∈ SConn ∧ 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) → 𝐹 ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 0 ) } ) ) |