| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issconn | ⊢ ( 𝐽  ∈  SConn  ↔  ( 𝐽  ∈  PConn  ∧  ∀ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) ) ) ) | 
						
							| 2 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 3 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  ↔  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑓  =  𝐹  →  𝑓  =  𝐹 ) | 
						
							| 6 | 2 | sneqd | ⊢ ( 𝑓  =  𝐹  →  { ( 𝑓 ‘ 0 ) }  =  { ( 𝐹 ‘ 0 ) } ) | 
						
							| 7 | 6 | xpeq2d | ⊢ ( 𝑓  =  𝐹  →  ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) | 
						
							| 8 | 5 7 | breq12d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } )  ↔  𝐹 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) ) | 
						
							| 9 | 4 8 | imbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) )  ↔  ( ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 1 )  →  𝐹 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) ) ) | 
						
							| 10 | 9 | rspccv | ⊢ ( ∀ 𝑓  ∈  ( II  Cn  𝐽 ) ( ( 𝑓 ‘ 0 )  =  ( 𝑓 ‘ 1 )  →  𝑓 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝑓 ‘ 0 ) } ) )  →  ( 𝐹  ∈  ( II  Cn  𝐽 )  →  ( ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 1 )  →  𝐹 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) ) ) | 
						
							| 11 | 1 10 | simplbiim | ⊢ ( 𝐽  ∈  SConn  →  ( 𝐹  ∈  ( II  Cn  𝐽 )  →  ( ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 1 )  →  𝐹 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) ) ) | 
						
							| 12 | 11 | 3imp | ⊢ ( ( 𝐽  ∈  SConn  ∧  𝐹  ∈  ( II  Cn  𝐽 )  ∧  ( 𝐹 ‘ 0 )  =  ( 𝐹 ‘ 1 ) )  →  𝐹 (  ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ 0 ) } ) ) |