Step |
Hyp |
Ref |
Expression |
1 |
|
cnpconn.2 |
⊢ 𝑌 = ∪ 𝐾 |
2 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
4 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
5 |
4
|
pconncn |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) → ∃ 𝑔 ∈ ( II Cn 𝐽 ) ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) |
6 |
5
|
3expb |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) → ∃ 𝑔 ∈ ( II Cn 𝐽 ) ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) |
7 |
6
|
3ad2antl1 |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) → ∃ 𝑔 ∈ ( II Cn 𝐽 ) ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) |
8 |
|
simprl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
9 |
|
simpll3 |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
10 |
|
cnco |
⊢ ( ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ 𝑔 ) ∈ ( II Cn 𝐾 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( 𝐹 ∘ 𝑔 ) ∈ ( II Cn 𝐾 ) ) |
12 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
13 |
12 4
|
cnf |
⊢ ( 𝑔 ∈ ( II Cn 𝐽 ) → 𝑔 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
14 |
8 13
|
syl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → 𝑔 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
15 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
16 |
|
fvco3 |
⊢ ( ( 𝑔 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) ) |
17 |
14 15 16
|
sylancl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) ) |
18 |
|
simprrl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( 𝑔 ‘ 0 ) = 𝑢 ) |
19 |
18
|
fveq2d |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) = ( 𝐹 ‘ 𝑢 ) ) |
20 |
17 19
|
eqtrd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ) |
21 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
22 |
|
fvco3 |
⊢ ( ( 𝑔 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) ) |
23 |
14 21 22
|
sylancl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) ) |
24 |
|
simprrr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( 𝑔 ‘ 1 ) = 𝑣 ) |
25 |
24
|
fveq2d |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) = ( 𝐹 ‘ 𝑣 ) ) |
26 |
23 25
|
eqtrd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) |
27 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( 𝑓 ‘ 0 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) ) |
28 |
27
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ↔ ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
29 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( 𝑓 ‘ 1 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) ) |
30 |
29
|
eqeq1d |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
31 |
28 30
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) ) |
32 |
31
|
rspcev |
⊢ ( ( ( 𝐹 ∘ 𝑔 ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 𝐹 ∘ 𝑔 ) ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( ( 𝐹 ∘ 𝑔 ) ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
33 |
11 20 26 32
|
syl12anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑢 ∧ ( 𝑔 ‘ 1 ) = 𝑣 ) ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
34 |
7 33
|
rexlimddv |
⊢ ( ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑢 ∈ ∪ 𝐽 ∧ 𝑣 ∈ ∪ 𝐽 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
35 |
34
|
ralrimivva |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑢 ∈ ∪ 𝐽 ∀ 𝑣 ∈ ∪ 𝐽 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
36 |
4 1
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
37 |
36
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
38 |
|
forn |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ran 𝐹 = 𝑌 ) |
40 |
|
dffo2 |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ran 𝐹 = 𝑌 ) ) |
41 |
37 39 40
|
sylanbrc |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
42 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑦 → ( ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝑓 ‘ 1 ) = 𝑦 ) ) |
43 |
42
|
anbi2d |
⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑦 → ( ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
44 |
43
|
rexbidv |
⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑦 → ( ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
45 |
44
|
cbvfo |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 → ( ∀ 𝑣 ∈ ∪ 𝐽 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
46 |
41 45
|
syl |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( ∀ 𝑣 ∈ ∪ 𝐽 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
47 |
46
|
ralbidv |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( ∀ 𝑢 ∈ ∪ 𝐽 ∀ 𝑣 ∈ ∪ 𝐽 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 𝑣 ) ) ↔ ∀ 𝑢 ∈ ∪ 𝐽 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
48 |
35 47
|
mpbid |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑢 ∈ ∪ 𝐽 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) |
49 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ 𝑢 ) = 𝑥 → ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ↔ ( 𝑓 ‘ 0 ) = 𝑥 ) ) |
50 |
49
|
anbi1d |
⊢ ( ( 𝐹 ‘ 𝑢 ) = 𝑥 → ( ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
51 |
50
|
rexbidv |
⊢ ( ( 𝐹 ‘ 𝑢 ) = 𝑥 → ( ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
52 |
51
|
ralbidv |
⊢ ( ( 𝐹 ‘ 𝑢 ) = 𝑥 → ( ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
53 |
52
|
cbvfo |
⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 → ( ∀ 𝑢 ∈ ∪ 𝐽 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
54 |
41 53
|
syl |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( ∀ 𝑢 ∈ ∪ 𝐽 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
55 |
48 54
|
mpbid |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) |
56 |
1
|
ispconn |
⊢ ( 𝐾 ∈ PConn ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
57 |
3 55 56
|
sylanbrc |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ PConn ) |