| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnpconn.2 | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 2 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  Top ) | 
						
							| 4 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 5 | 4 | pconncn | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 )  →  ∃ 𝑔  ∈  ( II  Cn  𝐽 ) ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) | 
						
							| 6 | 5 | 3expb | ⊢ ( ( 𝐽  ∈  PConn  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  →  ∃ 𝑔  ∈  ( II  Cn  𝐽 ) ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) | 
						
							| 7 | 6 | 3ad2antl1 | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  →  ∃ 𝑔  ∈  ( II  Cn  𝐽 ) ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) | 
						
							| 8 |  | simprl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  𝑔  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 9 |  | simpll3 | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 10 |  | cnco | ⊢ ( ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  𝑔 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( 𝐹  ∘  𝑔 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 12 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 13 | 12 4 | cnf | ⊢ ( 𝑔  ∈  ( II  Cn  𝐽 )  →  𝑔 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 14 | 8 13 | syl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  𝑔 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 15 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 16 |  | fvco3 | ⊢ ( ( 𝑔 : ( 0 [,] 1 ) ⟶ ∪  𝐽  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 0 )  =  ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) ) | 
						
							| 17 | 14 15 16 | sylancl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 0 )  =  ( 𝐹 ‘ ( 𝑔 ‘ 0 ) ) ) | 
						
							| 18 |  | simprrl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( 𝑔 ‘ 0 )  =  𝑢 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( 𝐹 ‘ ( 𝑔 ‘ 0 ) )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 20 | 17 19 | eqtrd | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 0 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 21 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 22 |  | fvco3 | ⊢ ( ( 𝑔 : ( 0 [,] 1 ) ⟶ ∪  𝐽  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 23 | 14 21 22 | sylancl | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 24 |  | simprrr | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( 𝑔 ‘ 1 )  =  𝑣 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( 𝐹 ‘ ( 𝑔 ‘ 1 ) )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 26 | 23 25 | eqtrd | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘  𝑔 )  →  ( 𝑓 ‘ 0 )  =  ( ( 𝐹  ∘  𝑔 ) ‘ 0 ) ) | 
						
							| 28 | 27 | eqeq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘  𝑔 )  →  ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ↔  ( ( 𝐹  ∘  𝑔 ) ‘ 0 )  =  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 29 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘  𝑔 )  →  ( 𝑓 ‘ 1 )  =  ( ( 𝐹  ∘  𝑔 ) ‘ 1 ) ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘  𝑔 )  →  ( ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( ( 𝐹  ∘  𝑔 ) ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 31 | 28 30 | anbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∘  𝑔 )  →  ( ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) )  ↔  ( ( ( 𝐹  ∘  𝑔 ) ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( ( 𝐹  ∘  𝑔 ) ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 32 | 31 | rspcev | ⊢ ( ( ( 𝐹  ∘  𝑔 )  ∈  ( II  Cn  𝐾 )  ∧  ( ( ( 𝐹  ∘  𝑔 ) ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( ( 𝐹  ∘  𝑔 ) ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 33 | 11 20 26 32 | syl12anc | ⊢ ( ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  ∧  ( 𝑔  ∈  ( II  Cn  𝐽 )  ∧  ( ( 𝑔 ‘ 0 )  =  𝑢  ∧  ( 𝑔 ‘ 1 )  =  𝑣 ) ) )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 34 | 7 33 | rexlimddv | ⊢ ( ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  ( 𝑢  ∈  ∪  𝐽  ∧  𝑣  ∈  ∪  𝐽 ) )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 35 | 34 | ralrimivva | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ∀ 𝑢  ∈  ∪  𝐽 ∀ 𝑣  ∈  ∪  𝐽 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 36 | 4 1 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : ∪  𝐽 ⟶ 𝑌 ) | 
						
							| 37 | 36 | 3ad2ant3 | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹 : ∪  𝐽 ⟶ 𝑌 ) | 
						
							| 38 |  | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌  →  ran  𝐹  =  𝑌 ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ran  𝐹  =  𝑌 ) | 
						
							| 40 |  | dffo2 | ⊢ ( 𝐹 : ∪  𝐽 –onto→ 𝑌  ↔  ( 𝐹 : ∪  𝐽 ⟶ 𝑌  ∧  ran  𝐹  =  𝑌 ) ) | 
						
							| 41 | 37 39 40 | sylanbrc | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹 : ∪  𝐽 –onto→ 𝑌 ) | 
						
							| 42 |  | eqeq2 | ⊢ ( ( 𝐹 ‘ 𝑣 )  =  𝑦  →  ( ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝑓 ‘ 1 )  =  𝑦 ) ) | 
						
							| 43 | 42 | anbi2d | ⊢ ( ( 𝐹 ‘ 𝑣 )  =  𝑦  →  ( ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) )  ↔  ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 44 | 43 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑣 )  =  𝑦  →  ( ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 45 | 44 | cbvfo | ⊢ ( 𝐹 : ∪  𝐽 –onto→ 𝑌  →  ( ∀ 𝑣  ∈  ∪  𝐽 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) )  ↔  ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 46 | 41 45 | syl | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ∀ 𝑣  ∈  ∪  𝐽 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) )  ↔  ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 47 | 46 | ralbidv | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ∀ 𝑢  ∈  ∪  𝐽 ∀ 𝑣  ∈  ∪  𝐽 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  ( 𝐹 ‘ 𝑣 ) )  ↔  ∀ 𝑢  ∈  ∪  𝐽 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 48 | 35 47 | mpbid | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ∀ 𝑢  ∈  ∪  𝐽 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) | 
						
							| 49 |  | eqeq2 | ⊢ ( ( 𝐹 ‘ 𝑢 )  =  𝑥  →  ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ↔  ( 𝑓 ‘ 0 )  =  𝑥 ) ) | 
						
							| 50 | 49 | anbi1d | ⊢ ( ( 𝐹 ‘ 𝑢 )  =  𝑥  →  ( ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 51 | 50 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑢 )  =  𝑥  →  ( ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 52 | 51 | ralbidv | ⊢ ( ( 𝐹 ‘ 𝑢 )  =  𝑥  →  ( ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 53 | 52 | cbvfo | ⊢ ( 𝐹 : ∪  𝐽 –onto→ 𝑌  →  ( ∀ 𝑢  ∈  ∪  𝐽 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 54 | 41 53 | syl | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ∀ 𝑢  ∈  ∪  𝐽 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 55 | 48 54 | mpbid | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) | 
						
							| 56 | 1 | ispconn | ⊢ ( 𝐾  ∈  PConn  ↔  ( 𝐾  ∈  Top  ∧  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  𝑌 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 57 | 3 55 56 | sylanbrc | ⊢ ( ( 𝐽  ∈  PConn  ∧  𝐹 : 𝑋 –onto→ 𝑌  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  PConn ) |