Step |
Hyp |
Ref |
Expression |
1 |
|
cnpconn.2 |
|
2 |
|
cntop2 |
|
3 |
2
|
3ad2ant3 |
|
4 |
|
eqid |
|
5 |
4
|
pconncn |
|
6 |
5
|
3expb |
|
7 |
6
|
3ad2antl1 |
|
8 |
|
simprl |
|
9 |
|
simpll3 |
|
10 |
|
cnco |
|
11 |
8 9 10
|
syl2anc |
|
12 |
|
iiuni |
|
13 |
12 4
|
cnf |
|
14 |
8 13
|
syl |
|
15 |
|
0elunit |
|
16 |
|
fvco3 |
|
17 |
14 15 16
|
sylancl |
|
18 |
|
simprrl |
|
19 |
18
|
fveq2d |
|
20 |
17 19
|
eqtrd |
|
21 |
|
1elunit |
|
22 |
|
fvco3 |
|
23 |
14 21 22
|
sylancl |
|
24 |
|
simprrr |
|
25 |
24
|
fveq2d |
|
26 |
23 25
|
eqtrd |
|
27 |
|
fveq1 |
|
28 |
27
|
eqeq1d |
|
29 |
|
fveq1 |
|
30 |
29
|
eqeq1d |
|
31 |
28 30
|
anbi12d |
|
32 |
31
|
rspcev |
|
33 |
11 20 26 32
|
syl12anc |
|
34 |
7 33
|
rexlimddv |
|
35 |
34
|
ralrimivva |
|
36 |
4 1
|
cnf |
|
37 |
36
|
3ad2ant3 |
|
38 |
|
forn |
|
39 |
38
|
3ad2ant2 |
|
40 |
|
dffo2 |
|
41 |
37 39 40
|
sylanbrc |
|
42 |
|
eqeq2 |
|
43 |
42
|
anbi2d |
|
44 |
43
|
rexbidv |
|
45 |
44
|
cbvfo |
|
46 |
41 45
|
syl |
|
47 |
46
|
ralbidv |
|
48 |
35 47
|
mpbid |
|
49 |
|
eqeq2 |
|
50 |
49
|
anbi1d |
|
51 |
50
|
rexbidv |
|
52 |
51
|
ralbidv |
|
53 |
52
|
cbvfo |
|
54 |
41 53
|
syl |
|
55 |
48 54
|
mpbid |
|
56 |
1
|
ispconn |
|
57 |
3 55 56
|
sylanbrc |
|