| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnpconn.2 |
|
| 2 |
|
cntop2 |
|
| 3 |
2
|
3ad2ant3 |
|
| 4 |
|
eqid |
|
| 5 |
4
|
pconncn |
|
| 6 |
5
|
3expb |
|
| 7 |
6
|
3ad2antl1 |
|
| 8 |
|
simprl |
|
| 9 |
|
simpll3 |
|
| 10 |
|
cnco |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
|
iiuni |
|
| 13 |
12 4
|
cnf |
|
| 14 |
8 13
|
syl |
|
| 15 |
|
0elunit |
|
| 16 |
|
fvco3 |
|
| 17 |
14 15 16
|
sylancl |
|
| 18 |
|
simprrl |
|
| 19 |
18
|
fveq2d |
|
| 20 |
17 19
|
eqtrd |
|
| 21 |
|
1elunit |
|
| 22 |
|
fvco3 |
|
| 23 |
14 21 22
|
sylancl |
|
| 24 |
|
simprrr |
|
| 25 |
24
|
fveq2d |
|
| 26 |
23 25
|
eqtrd |
|
| 27 |
|
fveq1 |
|
| 28 |
27
|
eqeq1d |
|
| 29 |
|
fveq1 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
28 30
|
anbi12d |
|
| 32 |
31
|
rspcev |
|
| 33 |
11 20 26 32
|
syl12anc |
|
| 34 |
7 33
|
rexlimddv |
|
| 35 |
34
|
ralrimivva |
|
| 36 |
4 1
|
cnf |
|
| 37 |
36
|
3ad2ant3 |
|
| 38 |
|
forn |
|
| 39 |
38
|
3ad2ant2 |
|
| 40 |
|
dffo2 |
|
| 41 |
37 39 40
|
sylanbrc |
|
| 42 |
|
eqeq2 |
|
| 43 |
42
|
anbi2d |
|
| 44 |
43
|
rexbidv |
|
| 45 |
44
|
cbvfo |
|
| 46 |
41 45
|
syl |
|
| 47 |
46
|
ralbidv |
|
| 48 |
35 47
|
mpbid |
|
| 49 |
|
eqeq2 |
|
| 50 |
49
|
anbi1d |
|
| 51 |
50
|
rexbidv |
|
| 52 |
51
|
ralbidv |
|
| 53 |
52
|
cbvfo |
|
| 54 |
41 53
|
syl |
|
| 55 |
48 54
|
mpbid |
|
| 56 |
1
|
ispconn |
|
| 57 |
3 55 56
|
sylanbrc |
|