Metamath Proof Explorer


Theorem cnpconn

Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis cnpconn.2 Y = K
Assertion cnpconn J PConn F : X onto Y F J Cn K K PConn

Proof

Step Hyp Ref Expression
1 cnpconn.2 Y = K
2 cntop2 F J Cn K K Top
3 2 3ad2ant3 J PConn F : X onto Y F J Cn K K Top
4 eqid J = J
5 4 pconncn J PConn u J v J g II Cn J g 0 = u g 1 = v
6 5 3expb J PConn u J v J g II Cn J g 0 = u g 1 = v
7 6 3ad2antl1 J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v
8 simprl J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v g II Cn J
9 simpll3 J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F J Cn K
10 cnco g II Cn J F J Cn K F g II Cn K
11 8 9 10 syl2anc J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g II Cn K
12 iiuni 0 1 = II
13 12 4 cnf g II Cn J g : 0 1 J
14 8 13 syl J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v g : 0 1 J
15 0elunit 0 0 1
16 fvco3 g : 0 1 J 0 0 1 F g 0 = F g 0
17 14 15 16 sylancl J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g 0 = F g 0
18 simprrl J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v g 0 = u
19 18 fveq2d J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g 0 = F u
20 17 19 eqtrd J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g 0 = F u
21 1elunit 1 0 1
22 fvco3 g : 0 1 J 1 0 1 F g 1 = F g 1
23 14 21 22 sylancl J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g 1 = F g 1
24 simprrr J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v g 1 = v
25 24 fveq2d J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g 1 = F v
26 23 25 eqtrd J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v F g 1 = F v
27 fveq1 f = F g f 0 = F g 0
28 27 eqeq1d f = F g f 0 = F u F g 0 = F u
29 fveq1 f = F g f 1 = F g 1
30 29 eqeq1d f = F g f 1 = F v F g 1 = F v
31 28 30 anbi12d f = F g f 0 = F u f 1 = F v F g 0 = F u F g 1 = F v
32 31 rspcev F g II Cn K F g 0 = F u F g 1 = F v f II Cn K f 0 = F u f 1 = F v
33 11 20 26 32 syl12anc J PConn F : X onto Y F J Cn K u J v J g II Cn J g 0 = u g 1 = v f II Cn K f 0 = F u f 1 = F v
34 7 33 rexlimddv J PConn F : X onto Y F J Cn K u J v J f II Cn K f 0 = F u f 1 = F v
35 34 ralrimivva J PConn F : X onto Y F J Cn K u J v J f II Cn K f 0 = F u f 1 = F v
36 4 1 cnf F J Cn K F : J Y
37 36 3ad2ant3 J PConn F : X onto Y F J Cn K F : J Y
38 forn F : X onto Y ran F = Y
39 38 3ad2ant2 J PConn F : X onto Y F J Cn K ran F = Y
40 dffo2 F : J onto Y F : J Y ran F = Y
41 37 39 40 sylanbrc J PConn F : X onto Y F J Cn K F : J onto Y
42 eqeq2 F v = y f 1 = F v f 1 = y
43 42 anbi2d F v = y f 0 = F u f 1 = F v f 0 = F u f 1 = y
44 43 rexbidv F v = y f II Cn K f 0 = F u f 1 = F v f II Cn K f 0 = F u f 1 = y
45 44 cbvfo F : J onto Y v J f II Cn K f 0 = F u f 1 = F v y Y f II Cn K f 0 = F u f 1 = y
46 41 45 syl J PConn F : X onto Y F J Cn K v J f II Cn K f 0 = F u f 1 = F v y Y f II Cn K f 0 = F u f 1 = y
47 46 ralbidv J PConn F : X onto Y F J Cn K u J v J f II Cn K f 0 = F u f 1 = F v u J y Y f II Cn K f 0 = F u f 1 = y
48 35 47 mpbid J PConn F : X onto Y F J Cn K u J y Y f II Cn K f 0 = F u f 1 = y
49 eqeq2 F u = x f 0 = F u f 0 = x
50 49 anbi1d F u = x f 0 = F u f 1 = y f 0 = x f 1 = y
51 50 rexbidv F u = x f II Cn K f 0 = F u f 1 = y f II Cn K f 0 = x f 1 = y
52 51 ralbidv F u = x y Y f II Cn K f 0 = F u f 1 = y y Y f II Cn K f 0 = x f 1 = y
53 52 cbvfo F : J onto Y u J y Y f II Cn K f 0 = F u f 1 = y x Y y Y f II Cn K f 0 = x f 1 = y
54 41 53 syl J PConn F : X onto Y F J Cn K u J y Y f II Cn K f 0 = F u f 1 = y x Y y Y f II Cn K f 0 = x f 1 = y
55 48 54 mpbid J PConn F : X onto Y F J Cn K x Y y Y f II Cn K f 0 = x f 1 = y
56 1 ispconn K PConn K Top x Y y Y f II Cn K f 0 = x f 1 = y
57 3 55 56 sylanbrc J PConn F : X onto Y F J Cn K K PConn