Metamath Proof Explorer


Theorem pconnconn

Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion pconnconn JPConnJConn

Proof

Step Hyp Ref Expression
1 df-3an xyxy=xyxy=
2 n0 xaax
3 n0 ybby
4 2 3 anbi12i xyaaxbby
5 exdistrv abaxbyaaxbby
6 4 5 bitr4i xyabaxby
7 simpll JPConnxJyJaxbyxy=JPConn
8 simprll JPConnxJyJaxbyxy=ax
9 simplrl JPConnxJyJaxbyxy=xJ
10 elunii axxJaJ
11 8 9 10 syl2anc JPConnxJyJaxbyxy=aJ
12 simprlr JPConnxJyJaxbyxy=by
13 simplrr JPConnxJyJaxbyxy=yJ
14 elunii byyJbJ
15 12 13 14 syl2anc JPConnxJyJaxbyxy=bJ
16 eqid J=J
17 16 pconncn JPConnaJbJfIICnJf0=af1=b
18 7 11 15 17 syl3anc JPConnxJyJaxbyxy=fIICnJf0=af1=b
19 simplrr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jxy=
20 simplrr fIICnJf0=af1=bxy=Jf1=b
21 20 adantl JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jf1=b
22 iiuni 01=II
23 iiconn IIConn
24 23 a1i JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JIIConn
25 simprll JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JfIICnJ
26 9 adantr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JxJ
27 uncom yx=xy
28 simprr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jxy=J
29 27 28 eqtrid JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jyx=J
30 13 adantr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JyJ
31 elssuni yJyJ
32 30 31 syl JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JyJ
33 incom yx=xy
34 33 19 eqtrid JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jyx=
35 uneqdifeq yJyx=yx=JJy=x
36 32 34 35 syl2anc JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jyx=JJy=x
37 29 36 mpbid JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JJy=x
38 pconntop JPConnJTop
39 38 ad3antrrr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JJTop
40 16 opncld JTopyJJyClsdJ
41 39 30 40 syl2anc JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JJyClsdJ
42 37 41 eqeltrrd JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=JxClsdJ
43 0elunit 001
44 43 a1i JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=J001
45 simplrl fIICnJf0=af1=bxy=Jf0=a
46 45 adantl JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jf0=a
47 8 adantr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jax
48 46 47 eqeltrd JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jf0x
49 22 24 25 26 42 44 48 conncn JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jf:01x
50 1elunit 101
51 ffvelcdm f:01x101f1x
52 49 50 51 sylancl JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jf1x
53 21 52 eqeltrrd JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jbx
54 12 adantr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jby
55 inelcm bxbyxy
56 53 54 55 syl2anc JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=Jxy
57 19 56 pm2.21ddne JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=J¬xy=J
58 57 expr JPConnxJyJaxbyxy=fIICnJf0=af1=bxy=J¬xy=J
59 58 pm2.01d JPConnxJyJaxbyxy=fIICnJf0=af1=b¬xy=J
60 59 neqned JPConnxJyJaxbyxy=fIICnJf0=af1=bxyJ
61 18 60 rexlimddv JPConnxJyJaxbyxy=xyJ
62 61 exp32 JPConnxJyJaxbyxy=xyJ
63 62 exlimdvv JPConnxJyJabaxbyxy=xyJ
64 6 63 biimtrid JPConnxJyJxyxy=xyJ
65 64 impd JPConnxJyJxyxy=xyJ
66 1 65 biimtrid JPConnxJyJxyxy=xyJ
67 66 ralrimivva JPConnxJyJxyxy=xyJ
68 16 toptopon JTopJTopOnJ
69 38 68 sylib JPConnJTopOnJ
70 dfconn2 JTopOnJJConnxJyJxyxy=xyJ
71 69 70 syl JPConnJConnxJyJxyxy=xyJ
72 67 71 mpbird JPConnJConn