Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pconnconn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an | |
|
2 | n0 | |
|
3 | n0 | |
|
4 | 2 3 | anbi12i | |
5 | exdistrv | |
|
6 | 4 5 | bitr4i | |
7 | simpll | |
|
8 | simprll | |
|
9 | simplrl | |
|
10 | elunii | |
|
11 | 8 9 10 | syl2anc | |
12 | simprlr | |
|
13 | simplrr | |
|
14 | elunii | |
|
15 | 12 13 14 | syl2anc | |
16 | eqid | |
|
17 | 16 | pconncn | |
18 | 7 11 15 17 | syl3anc | |
19 | simplrr | |
|
20 | simplrr | |
|
21 | 20 | adantl | |
22 | iiuni | |
|
23 | iiconn | |
|
24 | 23 | a1i | |
25 | simprll | |
|
26 | 9 | adantr | |
27 | uncom | |
|
28 | simprr | |
|
29 | 27 28 | eqtrid | |
30 | 13 | adantr | |
31 | elssuni | |
|
32 | 30 31 | syl | |
33 | incom | |
|
34 | 33 19 | eqtrid | |
35 | uneqdifeq | |
|
36 | 32 34 35 | syl2anc | |
37 | 29 36 | mpbid | |
38 | pconntop | |
|
39 | 38 | ad3antrrr | |
40 | 16 | opncld | |
41 | 39 30 40 | syl2anc | |
42 | 37 41 | eqeltrrd | |
43 | 0elunit | |
|
44 | 43 | a1i | |
45 | simplrl | |
|
46 | 45 | adantl | |
47 | 8 | adantr | |
48 | 46 47 | eqeltrd | |
49 | 22 24 25 26 42 44 48 | conncn | |
50 | 1elunit | |
|
51 | ffvelcdm | |
|
52 | 49 50 51 | sylancl | |
53 | 21 52 | eqeltrrd | |
54 | 12 | adantr | |
55 | inelcm | |
|
56 | 53 54 55 | syl2anc | |
57 | 19 56 | pm2.21ddne | |
58 | 57 | expr | |
59 | 58 | pm2.01d | |
60 | 59 | neqned | |
61 | 18 60 | rexlimddv | |
62 | 61 | exp32 | |
63 | 62 | exlimdvv | |
64 | 6 63 | biimtrid | |
65 | 64 | impd | |
66 | 1 65 | biimtrid | |
67 | 66 | ralrimivva | |
68 | 16 | toptopon | |
69 | 38 68 | sylib | |
70 | dfconn2 | |
|
71 | 69 70 | syl | |
72 | 67 71 | mpbird | |