| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3an |
|
| 2 |
|
n0 |
|
| 3 |
|
n0 |
|
| 4 |
2 3
|
anbi12i |
|
| 5 |
|
exdistrv |
|
| 6 |
4 5
|
bitr4i |
|
| 7 |
|
simpll |
|
| 8 |
|
simprll |
|
| 9 |
|
simplrl |
|
| 10 |
|
elunii |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
|
simprlr |
|
| 13 |
|
simplrr |
|
| 14 |
|
elunii |
|
| 15 |
12 13 14
|
syl2anc |
|
| 16 |
|
eqid |
|
| 17 |
16
|
pconncn |
|
| 18 |
7 11 15 17
|
syl3anc |
|
| 19 |
|
simplrr |
|
| 20 |
|
simplrr |
|
| 21 |
20
|
adantl |
|
| 22 |
|
iiuni |
|
| 23 |
|
iiconn |
|
| 24 |
23
|
a1i |
|
| 25 |
|
simprll |
|
| 26 |
9
|
adantr |
|
| 27 |
|
uncom |
|
| 28 |
|
simprr |
|
| 29 |
27 28
|
eqtrid |
|
| 30 |
13
|
adantr |
|
| 31 |
|
elssuni |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
incom |
|
| 34 |
33 19
|
eqtrid |
|
| 35 |
|
uneqdifeq |
|
| 36 |
32 34 35
|
syl2anc |
|
| 37 |
29 36
|
mpbid |
|
| 38 |
|
pconntop |
|
| 39 |
38
|
ad3antrrr |
|
| 40 |
16
|
opncld |
|
| 41 |
39 30 40
|
syl2anc |
|
| 42 |
37 41
|
eqeltrrd |
|
| 43 |
|
0elunit |
|
| 44 |
43
|
a1i |
|
| 45 |
|
simplrl |
|
| 46 |
45
|
adantl |
|
| 47 |
8
|
adantr |
|
| 48 |
46 47
|
eqeltrd |
|
| 49 |
22 24 25 26 42 44 48
|
conncn |
|
| 50 |
|
1elunit |
|
| 51 |
|
ffvelcdm |
|
| 52 |
49 50 51
|
sylancl |
|
| 53 |
21 52
|
eqeltrrd |
|
| 54 |
12
|
adantr |
|
| 55 |
|
inelcm |
|
| 56 |
53 54 55
|
syl2anc |
|
| 57 |
19 56
|
pm2.21ddne |
|
| 58 |
57
|
expr |
|
| 59 |
58
|
pm2.01d |
|
| 60 |
59
|
neqned |
|
| 61 |
18 60
|
rexlimddv |
|
| 62 |
61
|
exp32 |
|
| 63 |
62
|
exlimdvv |
|
| 64 |
6 63
|
biimtrid |
|
| 65 |
64
|
impd |
|
| 66 |
1 65
|
biimtrid |
|
| 67 |
66
|
ralrimivva |
|
| 68 |
16
|
toptopon |
|
| 69 |
38 68
|
sylib |
|
| 70 |
|
dfconn2 |
|
| 71 |
69 70
|
syl |
|
| 72 |
67 71
|
mpbird |
|