| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
simpll |
|
| 3 |
|
simplrl |
|
| 4 |
|
simpr1 |
|
| 5 |
|
simplrr |
|
| 6 |
|
simpr2 |
|
| 7 |
|
simpr3 |
|
| 8 |
1 2 3 4 5 6 7
|
conndisj |
|
| 9 |
8
|
ex |
|
| 10 |
9
|
ralrimivva |
|
| 11 |
|
topontop |
|
| 12 |
1
|
cldopn |
|
| 13 |
12
|
adantl |
|
| 14 |
|
df-3an |
|
| 15 |
|
ineq2 |
|
| 16 |
|
disjdif |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
17
|
biantrud |
|
| 19 |
|
neeq1 |
|
| 20 |
19
|
anbi2d |
|
| 21 |
18 20
|
bitr3d |
|
| 22 |
14 21
|
bitrid |
|
| 23 |
|
uneq2 |
|
| 24 |
|
undif2 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
neeq1d |
|
| 27 |
22 26
|
imbi12d |
|
| 28 |
27
|
rspcv |
|
| 29 |
13 28
|
syl |
|
| 30 |
1
|
cldss |
|
| 31 |
30
|
adantl |
|
| 32 |
|
ssequn1 |
|
| 33 |
31 32
|
sylib |
|
| 34 |
|
ssdif0 |
|
| 35 |
|
idd |
|
| 36 |
35 31
|
jctild |
|
| 37 |
|
eqss |
|
| 38 |
36 37
|
imbitrrdi |
|
| 39 |
34 38
|
biimtrrid |
|
| 40 |
33 39
|
embantd |
|
| 41 |
40
|
orim2d |
|
| 42 |
|
impexp |
|
| 43 |
|
df-ne |
|
| 44 |
|
id |
|
| 45 |
44
|
necon4d |
|
| 46 |
|
id |
|
| 47 |
46
|
necon3d |
|
| 48 |
45 47
|
impbii |
|
| 49 |
43 48
|
imbi12i |
|
| 50 |
|
pm4.64 |
|
| 51 |
49 50
|
bitri |
|
| 52 |
42 51
|
bitri |
|
| 53 |
|
vex |
|
| 54 |
53
|
elpr |
|
| 55 |
41 52 54
|
3imtr4g |
|
| 56 |
29 55
|
syld |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
com23 |
|
| 59 |
58
|
imim2d |
|
| 60 |
|
elin |
|
| 61 |
60
|
imbi1i |
|
| 62 |
|
impexp |
|
| 63 |
61 62
|
bitri |
|
| 64 |
59 63
|
imbitrrdi |
|
| 65 |
64
|
alimdv |
|
| 66 |
|
df-ral |
|
| 67 |
|
df-ss |
|
| 68 |
65 66 67
|
3imtr4g |
|
| 69 |
1
|
isconn2 |
|
| 70 |
69
|
baib |
|
| 71 |
68 70
|
sylibrd |
|
| 72 |
11 71
|
syl |
|
| 73 |
10 72
|
impbid2 |
|
| 74 |
|
toponuni |
|
| 75 |
74
|
neeq2d |
|
| 76 |
75
|
imbi2d |
|
| 77 |
76
|
2ralbidv |
|
| 78 |
73 77
|
bitr4d |
|