| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isconn.1 |
|
| 2 |
|
connclo.1 |
|
| 3 |
|
connclo.2 |
|
| 4 |
|
connclo.3 |
|
| 5 |
|
conndisj.4 |
|
| 6 |
|
conndisj.5 |
|
| 7 |
|
conndisj.6 |
|
| 8 |
|
elssuni |
|
| 9 |
3 8
|
syl |
|
| 10 |
9 1
|
sseqtrrdi |
|
| 11 |
|
uneqdifeq |
|
| 12 |
10 7 11
|
syl2anc |
|
| 13 |
|
simpr |
|
| 14 |
13
|
difeq2d |
|
| 15 |
|
dfss4 |
|
| 16 |
10 15
|
sylib |
|
| 17 |
16
|
adantr |
|
| 18 |
2
|
adantr |
|
| 19 |
5
|
adantr |
|
| 20 |
6
|
adantr |
|
| 21 |
1
|
isconn |
|
| 22 |
21
|
simplbi |
|
| 23 |
2 22
|
syl |
|
| 24 |
1
|
opncld |
|
| 25 |
23 3 24
|
syl2anc |
|
| 26 |
25
|
adantr |
|
| 27 |
13 26
|
eqeltrrd |
|
| 28 |
1 18 19 20 27
|
connclo |
|
| 29 |
28
|
difeq2d |
|
| 30 |
|
difid |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
14 17 31
|
3eqtr3d |
|
| 33 |
32
|
ex |
|
| 34 |
12 33
|
sylbid |
|
| 35 |
34
|
necon3d |
|
| 36 |
4 35
|
mpd |
|