Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008) (Proof shortened by Mario Carneiro, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isconn.1 | |
|
connclo.1 | |
||
connclo.2 | |
||
connclo.3 | |
||
conndisj.4 | |
||
conndisj.5 | |
||
conndisj.6 | |
||
Assertion | conndisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isconn.1 | |
|
2 | connclo.1 | |
|
3 | connclo.2 | |
|
4 | connclo.3 | |
|
5 | conndisj.4 | |
|
6 | conndisj.5 | |
|
7 | conndisj.6 | |
|
8 | elssuni | |
|
9 | 3 8 | syl | |
10 | 9 1 | sseqtrrdi | |
11 | uneqdifeq | |
|
12 | 10 7 11 | syl2anc | |
13 | simpr | |
|
14 | 13 | difeq2d | |
15 | dfss4 | |
|
16 | 10 15 | sylib | |
17 | 16 | adantr | |
18 | 2 | adantr | |
19 | 5 | adantr | |
20 | 6 | adantr | |
21 | 1 | isconn | |
22 | 21 | simplbi | |
23 | 2 22 | syl | |
24 | 1 | opncld | |
25 | 23 3 24 | syl2anc | |
26 | 25 | adantr | |
27 | 13 26 | eqeltrrd | |
28 | 1 18 19 20 27 | connclo | |
29 | 28 | difeq2d | |
30 | difid | |
|
31 | 29 30 | eqtrdi | |
32 | 14 17 31 | 3eqtr3d | |
33 | 32 | ex | |
34 | 12 33 | sylbid | |
35 | 34 | necon3d | |
36 | 4 35 | mpd | |