Metamath Proof Explorer


Theorem conndisj

Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008) (Proof shortened by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses isconn.1 X = J
connclo.1 φ J Conn
connclo.2 φ A J
connclo.3 φ A
conndisj.4 φ B J
conndisj.5 φ B
conndisj.6 φ A B =
Assertion conndisj φ A B X

Proof

Step Hyp Ref Expression
1 isconn.1 X = J
2 connclo.1 φ J Conn
3 connclo.2 φ A J
4 connclo.3 φ A
5 conndisj.4 φ B J
6 conndisj.5 φ B
7 conndisj.6 φ A B =
8 elssuni A J A J
9 3 8 syl φ A J
10 9 1 sseqtrrdi φ A X
11 uneqdifeq A X A B = A B = X X A = B
12 10 7 11 syl2anc φ A B = X X A = B
13 simpr φ X A = B X A = B
14 13 difeq2d φ X A = B X X A = X B
15 dfss4 A X X X A = A
16 10 15 sylib φ X X A = A
17 16 adantr φ X A = B X X A = A
18 2 adantr φ X A = B J Conn
19 5 adantr φ X A = B B J
20 6 adantr φ X A = B B
21 1 isconn J Conn J Top J Clsd J = X
22 21 simplbi J Conn J Top
23 2 22 syl φ J Top
24 1 opncld J Top A J X A Clsd J
25 23 3 24 syl2anc φ X A Clsd J
26 25 adantr φ X A = B X A Clsd J
27 13 26 eqeltrrd φ X A = B B Clsd J
28 1 18 19 20 27 connclo φ X A = B B = X
29 28 difeq2d φ X A = B X B = X X
30 difid X X =
31 29 30 eqtrdi φ X A = B X B =
32 14 17 31 3eqtr3d φ X A = B A =
33 32 ex φ X A = B A =
34 12 33 sylbid φ A B = X A =
35 34 necon3d φ A A B X
36 4 35 mpd φ A B X