Metamath Proof Explorer


Theorem connclo

Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses isconn.1 X=J
connclo.1 φJConn
connclo.2 φAJ
connclo.3 φA
connclo.4 φAClsdJ
Assertion connclo φA=X

Proof

Step Hyp Ref Expression
1 isconn.1 X=J
2 connclo.1 φJConn
3 connclo.2 φAJ
4 connclo.3 φA
5 connclo.4 φAClsdJ
6 4 neneqd φ¬A=
7 3 5 elind φAJClsdJ
8 1 isconn JConnJTopJClsdJ=X
9 8 simprbi JConnJClsdJ=X
10 2 9 syl φJClsdJ=X
11 7 10 eleqtrd φAX
12 elpri AXA=A=X
13 11 12 syl φA=A=X
14 13 ord φ¬A=A=X
15 6 14 mpd φA=X