Metamath Proof Explorer


Theorem connclo

Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses isconn.1 𝑋 = 𝐽
connclo.1 ( 𝜑𝐽 ∈ Conn )
connclo.2 ( 𝜑𝐴𝐽 )
connclo.3 ( 𝜑𝐴 ≠ ∅ )
connclo.4 ( 𝜑𝐴 ∈ ( Clsd ‘ 𝐽 ) )
Assertion connclo ( 𝜑𝐴 = 𝑋 )

Proof

Step Hyp Ref Expression
1 isconn.1 𝑋 = 𝐽
2 connclo.1 ( 𝜑𝐽 ∈ Conn )
3 connclo.2 ( 𝜑𝐴𝐽 )
4 connclo.3 ( 𝜑𝐴 ≠ ∅ )
5 connclo.4 ( 𝜑𝐴 ∈ ( Clsd ‘ 𝐽 ) )
6 4 neneqd ( 𝜑 → ¬ 𝐴 = ∅ )
7 3 5 elind ( 𝜑𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) )
8 1 isconn ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) )
9 8 simprbi ( 𝐽 ∈ Conn → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } )
10 2 9 syl ( 𝜑 → ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } )
11 7 10 eleqtrd ( 𝜑𝐴 ∈ { ∅ , 𝑋 } )
12 elpri ( 𝐴 ∈ { ∅ , 𝑋 } → ( 𝐴 = ∅ ∨ 𝐴 = 𝑋 ) )
13 11 12 syl ( 𝜑 → ( 𝐴 = ∅ ∨ 𝐴 = 𝑋 ) )
14 13 ord ( 𝜑 → ( ¬ 𝐴 = ∅ → 𝐴 = 𝑋 ) )
15 6 14 mpd ( 𝜑𝐴 = 𝑋 )