| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isconn.1 |
|- X = U. J |
| 2 |
|
connclo.1 |
|- ( ph -> J e. Conn ) |
| 3 |
|
connclo.2 |
|- ( ph -> A e. J ) |
| 4 |
|
connclo.3 |
|- ( ph -> A =/= (/) ) |
| 5 |
|
connclo.4 |
|- ( ph -> A e. ( Clsd ` J ) ) |
| 6 |
4
|
neneqd |
|- ( ph -> -. A = (/) ) |
| 7 |
3 5
|
elind |
|- ( ph -> A e. ( J i^i ( Clsd ` J ) ) ) |
| 8 |
1
|
isconn |
|- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
| 9 |
8
|
simprbi |
|- ( J e. Conn -> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) |
| 11 |
7 10
|
eleqtrd |
|- ( ph -> A e. { (/) , X } ) |
| 12 |
|
elpri |
|- ( A e. { (/) , X } -> ( A = (/) \/ A = X ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( A = (/) \/ A = X ) ) |
| 14 |
13
|
ord |
|- ( ph -> ( -. A = (/) -> A = X ) ) |
| 15 |
6 14
|
mpd |
|- ( ph -> A = X ) |