Metamath Proof Explorer


Theorem isconn2

Description: The predicate J is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis isconn.1 X=J
Assertion isconn2 JConnJTopJClsdJX

Proof

Step Hyp Ref Expression
1 isconn.1 X=J
2 1 isconn JConnJTopJClsdJ=X
3 eqss JClsdJ=XJClsdJXXJClsdJ
4 0opn JTopJ
5 0cld JTopClsdJ
6 4 5 elind JTopJClsdJ
7 1 topopn JTopXJ
8 1 topcld JTopXClsdJ
9 7 8 elind JTopXJClsdJ
10 6 9 prssd JTopXJClsdJ
11 10 biantrud JTopJClsdJXJClsdJXXJClsdJ
12 3 11 bitr4id JTopJClsdJ=XJClsdJX
13 12 pm5.32i JTopJClsdJ=XJTopJClsdJX
14 2 13 bitri JConnJTopJClsdJX