| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pconntop |
|
| 2 |
|
pconntop |
|
| 3 |
|
txtop |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
an6 |
|
| 6 |
|
eqid |
|
| 7 |
6
|
pconncn |
|
| 8 |
|
eqid |
|
| 9 |
8
|
pconncn |
|
| 10 |
7 9
|
anim12i |
|
| 11 |
5 10
|
sylbir |
|
| 12 |
|
reeanv |
|
| 13 |
11 12
|
sylibr |
|
| 14 |
|
iiuni |
|
| 15 |
|
eqid |
|
| 16 |
14 15
|
txcnmpt |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
|
0elunit |
|
| 19 |
|
fveq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
19 20
|
opeq12d |
|
| 22 |
|
opex |
|
| 23 |
21 15 22
|
fvmpt |
|
| 24 |
18 23
|
ax-mp |
|
| 25 |
|
simprrl |
|
| 26 |
25
|
simpld |
|
| 27 |
|
simprrr |
|
| 28 |
27
|
simpld |
|
| 29 |
26 28
|
opeq12d |
|
| 30 |
24 29
|
eqtrid |
|
| 31 |
|
1elunit |
|
| 32 |
|
fveq2 |
|
| 33 |
|
fveq2 |
|
| 34 |
32 33
|
opeq12d |
|
| 35 |
|
opex |
|
| 36 |
34 15 35
|
fvmpt |
|
| 37 |
31 36
|
ax-mp |
|
| 38 |
25
|
simprd |
|
| 39 |
27
|
simprd |
|
| 40 |
38 39
|
opeq12d |
|
| 41 |
37 40
|
eqtrid |
|
| 42 |
|
fveq1 |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
|
fveq1 |
|
| 45 |
44
|
eqeq1d |
|
| 46 |
43 45
|
anbi12d |
|
| 47 |
46
|
rspcev |
|
| 48 |
17 30 41 47
|
syl12anc |
|
| 49 |
48
|
expr |
|
| 50 |
49
|
rexlimdvva |
|
| 51 |
13 50
|
mpd |
|
| 52 |
51
|
3expa |
|
| 53 |
52
|
ralrimivva |
|
| 54 |
53
|
ralrimivva |
|
| 55 |
|
eqeq2 |
|
| 56 |
55
|
anbi2d |
|
| 57 |
56
|
rexbidv |
|
| 58 |
57
|
ralxp |
|
| 59 |
|
eqeq2 |
|
| 60 |
59
|
anbi1d |
|
| 61 |
60
|
rexbidv |
|
| 62 |
61
|
2ralbidv |
|
| 63 |
58 62
|
bitrid |
|
| 64 |
63
|
ralxp |
|
| 65 |
54 64
|
sylibr |
|
| 66 |
6 8
|
txuni |
|
| 67 |
1 2 66
|
syl2an |
|
| 68 |
67
|
raleqdv |
|
| 69 |
67 68
|
raleqbidv |
|
| 70 |
65 69
|
mpbid |
|
| 71 |
|
eqid |
|
| 72 |
71
|
ispconn |
|
| 73 |
4 70 72
|
sylanbrc |
|