Step |
Hyp |
Ref |
Expression |
1 |
|
pconntop |
⊢ ( 𝑅 ∈ PConn → 𝑅 ∈ Top ) |
2 |
|
pconntop |
⊢ ( 𝑆 ∈ PConn → 𝑆 ∈ Top ) |
3 |
|
txtop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
5 |
|
an6 |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑥 ∈ ∪ 𝑅 ∧ 𝑧 ∈ ∪ 𝑅 ) ∧ ( 𝑆 ∈ PConn ∧ 𝑦 ∈ ∪ 𝑆 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ↔ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ) |
6 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
7 |
6
|
pconncn |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑥 ∈ ∪ 𝑅 ∧ 𝑧 ∈ ∪ 𝑅 ) → ∃ 𝑔 ∈ ( II Cn 𝑅 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ) |
8 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
9 |
8
|
pconncn |
⊢ ( ( 𝑆 ∈ PConn ∧ 𝑦 ∈ ∪ 𝑆 ∧ 𝑤 ∈ ∪ 𝑆 ) → ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) |
10 |
7 9
|
anim12i |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑥 ∈ ∪ 𝑅 ∧ 𝑧 ∈ ∪ 𝑅 ) ∧ ( 𝑆 ∈ PConn ∧ 𝑦 ∈ ∪ 𝑆 ∧ 𝑤 ∈ ∪ 𝑆 ) ) → ( ∃ 𝑔 ∈ ( II Cn 𝑅 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) |
11 |
5 10
|
sylbir |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) → ( ∃ 𝑔 ∈ ( II Cn 𝑅 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) |
12 |
|
reeanv |
⊢ ( ∃ 𝑔 ∈ ( II Cn 𝑅 ) ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ↔ ( ∃ 𝑔 ∈ ( II Cn 𝑅 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) → ∃ 𝑔 ∈ ( II Cn 𝑅 ) ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) |
14 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
15 |
|
eqid |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) |
16 |
14 15
|
txcnmpt |
⊢ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ) |
18 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
19 |
|
fveq2 |
⊢ ( 𝑡 = 0 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 0 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑡 = 0 → ( ℎ ‘ 𝑡 ) = ( ℎ ‘ 0 ) ) |
21 |
19 20
|
opeq12d |
⊢ ( 𝑡 = 0 → 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 = 〈 ( 𝑔 ‘ 0 ) , ( ℎ ‘ 0 ) 〉 ) |
22 |
|
opex |
⊢ 〈 ( 𝑔 ‘ 0 ) , ( ℎ ‘ 0 ) 〉 ∈ V |
23 |
21 15 22
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) = 〈 ( 𝑔 ‘ 0 ) , ( ℎ ‘ 0 ) 〉 ) |
24 |
18 23
|
ax-mp |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) = 〈 ( 𝑔 ‘ 0 ) , ( ℎ ‘ 0 ) 〉 |
25 |
|
simprrl |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ) |
26 |
25
|
simpld |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( 𝑔 ‘ 0 ) = 𝑥 ) |
27 |
|
simprrr |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) |
28 |
27
|
simpld |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( ℎ ‘ 0 ) = 𝑦 ) |
29 |
26 28
|
opeq12d |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → 〈 ( 𝑔 ‘ 0 ) , ( ℎ ‘ 0 ) 〉 = 〈 𝑥 , 𝑦 〉 ) |
30 |
24 29
|
syl5eq |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ) |
31 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
32 |
|
fveq2 |
⊢ ( 𝑡 = 1 → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ 1 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑡 = 1 → ( ℎ ‘ 𝑡 ) = ( ℎ ‘ 1 ) ) |
34 |
32 33
|
opeq12d |
⊢ ( 𝑡 = 1 → 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 = 〈 ( 𝑔 ‘ 1 ) , ( ℎ ‘ 1 ) 〉 ) |
35 |
|
opex |
⊢ 〈 ( 𝑔 ‘ 1 ) , ( ℎ ‘ 1 ) 〉 ∈ V |
36 |
34 15 35
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) = 〈 ( 𝑔 ‘ 1 ) , ( ℎ ‘ 1 ) 〉 ) |
37 |
31 36
|
ax-mp |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) = 〈 ( 𝑔 ‘ 1 ) , ( ℎ ‘ 1 ) 〉 |
38 |
25
|
simprd |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( 𝑔 ‘ 1 ) = 𝑧 ) |
39 |
27
|
simprd |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( ℎ ‘ 1 ) = 𝑤 ) |
40 |
38 39
|
opeq12d |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → 〈 ( 𝑔 ‘ 1 ) , ( ℎ ‘ 1 ) 〉 = 〈 𝑧 , 𝑤 〉 ) |
41 |
37 40
|
syl5eq |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) |
42 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) → ( 𝑓 ‘ 0 ) = ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) → ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ↔ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ) ) |
44 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) → ( 𝑓 ‘ 1 ) = ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) ) |
45 |
44
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) → ( ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ↔ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
46 |
43 45
|
anbi12d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) → ( ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ↔ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
47 |
46
|
rspcev |
⊢ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ 〈 ( 𝑔 ‘ 𝑡 ) , ( ℎ ‘ 𝑡 ) 〉 ) ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
48 |
17 30 41 47
|
syl12anc |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ∧ ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
49 |
48
|
expr |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) ∧ ( 𝑔 ∈ ( II Cn 𝑅 ) ∧ ℎ ∈ ( II Cn 𝑆 ) ) ) → ( ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
50 |
49
|
rexlimdvva |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) → ( ∃ 𝑔 ∈ ( II Cn 𝑅 ) ∃ ℎ ∈ ( II Cn 𝑆 ) ( ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑧 ) ∧ ( ( ℎ ‘ 0 ) = 𝑦 ∧ ( ℎ ‘ 1 ) = 𝑤 ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
51 |
13 50
|
mpd |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
52 |
51
|
3expa |
⊢ ( ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ) ∧ ( 𝑧 ∈ ∪ 𝑅 ∧ 𝑤 ∈ ∪ 𝑆 ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
53 |
52
|
ralrimivva |
⊢ ( ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) ∧ ( 𝑥 ∈ ∪ 𝑅 ∧ 𝑦 ∈ ∪ 𝑆 ) ) → ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
54 |
53
|
ralrimivva |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ∀ 𝑥 ∈ ∪ 𝑅 ∀ 𝑦 ∈ ∪ 𝑆 ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
55 |
|
eqeq2 |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ( 𝑓 ‘ 1 ) = 𝑣 ↔ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
56 |
55
|
anbi2d |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
57 |
56
|
rexbidv |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
58 |
57
|
ralxp |
⊢ ( ∀ 𝑣 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
59 |
|
eqeq2 |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑓 ‘ 0 ) = 𝑢 ↔ ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ) ) |
60 |
59
|
anbi1d |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ↔ ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
61 |
60
|
rexbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ↔ ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
62 |
61
|
2ralbidv |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
63 |
58 62
|
syl5bb |
⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑣 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) ) |
64 |
63
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∀ 𝑣 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ∀ 𝑥 ∈ ∪ 𝑅 ∀ 𝑦 ∈ ∪ 𝑆 ∀ 𝑧 ∈ ∪ 𝑅 ∀ 𝑤 ∈ ∪ 𝑆 ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑓 ‘ 1 ) = 〈 𝑧 , 𝑤 〉 ) ) |
65 |
54 64
|
sylibr |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ∀ 𝑢 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∀ 𝑣 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ) |
66 |
6 8
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
67 |
1 2 66
|
syl2an |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
68 |
67
|
raleqdv |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ( ∀ 𝑣 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ∀ 𝑣 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ) ) |
69 |
67 68
|
raleqbidv |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ( ∀ 𝑢 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∀ 𝑣 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ↔ ∀ 𝑢 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑣 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ) ) |
70 |
65 69
|
mpbid |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ∀ 𝑢 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑣 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ) |
71 |
|
eqid |
⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) |
72 |
71
|
ispconn |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ PConn ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑢 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑣 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑓 ∈ ( II Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑓 ‘ 0 ) = 𝑢 ∧ ( 𝑓 ‘ 1 ) = 𝑣 ) ) ) |
73 |
4 70 72
|
sylanbrc |
⊢ ( ( 𝑅 ∈ PConn ∧ 𝑆 ∈ PConn ) → ( 𝑅 ×t 𝑆 ) ∈ PConn ) |