Metamath Proof Explorer


Theorem ptpconn

Description: The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion ptpconn ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) → ( ∏t𝐹 ) ∈ PConn )

Proof

Step Hyp Ref Expression
1 pconntop ( 𝑥 ∈ PConn → 𝑥 ∈ Top )
2 1 ssriv PConn ⊆ Top
3 fss ( ( 𝐹 : 𝐴 ⟶ PConn ∧ PConn ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top )
4 2 3 mpan2 ( 𝐹 : 𝐴 ⟶ PConn → 𝐹 : 𝐴 ⟶ Top )
5 pttop ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( ∏t𝐹 ) ∈ Top )
6 4 5 sylan2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) → ( ∏t𝐹 ) ∈ Top )
7 fvi ( 𝐴𝑉 → ( I ‘ 𝐴 ) = 𝐴 )
8 7 ad2antrr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ( I ‘ 𝐴 ) = 𝐴 )
9 8 eleq2d ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ( 𝑡 ∈ ( I ‘ 𝐴 ) ↔ 𝑡𝐴 ) )
10 9 biimpa ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡 ∈ ( I ‘ 𝐴 ) ) → 𝑡𝐴 )
11 simplr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝐹 : 𝐴 ⟶ PConn )
12 11 ffvelrnda ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡𝐴 ) → ( 𝐹𝑡 ) ∈ PConn )
13 simprl ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝑥 ( ∏t𝐹 ) )
14 eqid ( ∏t𝐹 ) = ( ∏t𝐹 )
15 14 ptuni ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑡𝐴 ( 𝐹𝑡 ) = ( ∏t𝐹 ) )
16 4 15 sylan2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) → X 𝑡𝐴 ( 𝐹𝑡 ) = ( ∏t𝐹 ) )
17 16 adantr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → X 𝑡𝐴 ( 𝐹𝑡 ) = ( ∏t𝐹 ) )
18 13 17 eleqtrrd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝑥X 𝑡𝐴 ( 𝐹𝑡 ) )
19 vex 𝑥 ∈ V
20 19 elixp ( 𝑥X 𝑡𝐴 ( 𝐹𝑡 ) ↔ ( 𝑥 Fn 𝐴 ∧ ∀ 𝑡𝐴 ( 𝑥𝑡 ) ∈ ( 𝐹𝑡 ) ) )
21 18 20 sylib ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ( 𝑥 Fn 𝐴 ∧ ∀ 𝑡𝐴 ( 𝑥𝑡 ) ∈ ( 𝐹𝑡 ) ) )
22 21 simprd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ∀ 𝑡𝐴 ( 𝑥𝑡 ) ∈ ( 𝐹𝑡 ) )
23 22 r19.21bi ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡𝐴 ) → ( 𝑥𝑡 ) ∈ ( 𝐹𝑡 ) )
24 simprr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝑦 ( ∏t𝐹 ) )
25 24 17 eleqtrrd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝑦X 𝑡𝐴 ( 𝐹𝑡 ) )
26 vex 𝑦 ∈ V
27 26 elixp ( 𝑦X 𝑡𝐴 ( 𝐹𝑡 ) ↔ ( 𝑦 Fn 𝐴 ∧ ∀ 𝑡𝐴 ( 𝑦𝑡 ) ∈ ( 𝐹𝑡 ) ) )
28 25 27 sylib ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ( 𝑦 Fn 𝐴 ∧ ∀ 𝑡𝐴 ( 𝑦𝑡 ) ∈ ( 𝐹𝑡 ) ) )
29 28 simprd ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ∀ 𝑡𝐴 ( 𝑦𝑡 ) ∈ ( 𝐹𝑡 ) )
30 29 r19.21bi ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡𝐴 ) → ( 𝑦𝑡 ) ∈ ( 𝐹𝑡 ) )
31 eqid ( 𝐹𝑡 ) = ( 𝐹𝑡 )
32 31 pconncn ( ( ( 𝐹𝑡 ) ∈ PConn ∧ ( 𝑥𝑡 ) ∈ ( 𝐹𝑡 ) ∧ ( 𝑦𝑡 ) ∈ ( 𝐹𝑡 ) ) → ∃ 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) )
33 12 23 30 32 syl3anc ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡𝐴 ) → ∃ 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) )
34 df-rex ( ∃ 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ) )
35 33 34 sylib ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡𝐴 ) → ∃ 𝑓 ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ) )
36 10 35 syldan ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ 𝑡 ∈ ( I ‘ 𝐴 ) ) → ∃ 𝑓 ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ) )
37 36 ralrimiva ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ∃ 𝑓 ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ) )
38 fvex ( I ‘ 𝐴 ) ∈ V
39 eleq1 ( 𝑓 = ( 𝑔𝑡 ) → ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ↔ ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ) )
40 fveq1 ( 𝑓 = ( 𝑔𝑡 ) → ( 𝑓 ‘ 0 ) = ( ( 𝑔𝑡 ) ‘ 0 ) )
41 40 eqeq1d ( 𝑓 = ( 𝑔𝑡 ) → ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ↔ ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ) )
42 fveq1 ( 𝑓 = ( 𝑔𝑡 ) → ( 𝑓 ‘ 1 ) = ( ( 𝑔𝑡 ) ‘ 1 ) )
43 42 eqeq1d ( 𝑓 = ( 𝑔𝑡 ) → ( ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ↔ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) )
44 41 43 anbi12d ( 𝑓 = ( 𝑔𝑡 ) → ( ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ↔ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) )
45 39 44 anbi12d ( 𝑓 = ( 𝑔𝑡 ) → ( ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ) ↔ ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) )
46 38 45 ac6s2 ( ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ∃ 𝑓 ( 𝑓 ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( 𝑓 ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( 𝑓 ‘ 1 ) = ( 𝑦𝑡 ) ) ) → ∃ 𝑔 ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) )
47 37 46 syl ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ∃ 𝑔 ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) )
48 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
49 48 a1i ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) )
50 simplll ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝐴𝑉 )
51 11 adantr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝐹 : 𝐴 ⟶ PConn )
52 51 4 syl ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝐹 : 𝐴 ⟶ Top )
53 8 adantr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( I ‘ 𝐴 ) = 𝐴 )
54 53 eleq2d ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( 𝑖 ∈ ( I ‘ 𝐴 ) ↔ 𝑖𝐴 ) )
55 54 biimpar ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → 𝑖 ∈ ( I ‘ 𝐴 ) )
56 simprr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) )
57 fveq2 ( 𝑡 = 𝑖 → ( 𝑔𝑡 ) = ( 𝑔𝑖 ) )
58 fveq2 ( 𝑡 = 𝑖 → ( 𝐹𝑡 ) = ( 𝐹𝑖 ) )
59 58 oveq2d ( 𝑡 = 𝑖 → ( II Cn ( 𝐹𝑡 ) ) = ( II Cn ( 𝐹𝑖 ) ) )
60 57 59 eleq12d ( 𝑡 = 𝑖 → ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ↔ ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) ) )
61 57 fveq1d ( 𝑡 = 𝑖 → ( ( 𝑔𝑡 ) ‘ 0 ) = ( ( 𝑔𝑖 ) ‘ 0 ) )
62 fveq2 ( 𝑡 = 𝑖 → ( 𝑥𝑡 ) = ( 𝑥𝑖 ) )
63 61 62 eqeq12d ( 𝑡 = 𝑖 → ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ↔ ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ) )
64 57 fveq1d ( 𝑡 = 𝑖 → ( ( 𝑔𝑡 ) ‘ 1 ) = ( ( 𝑔𝑖 ) ‘ 1 ) )
65 fveq2 ( 𝑡 = 𝑖 → ( 𝑦𝑡 ) = ( 𝑦𝑖 ) )
66 64 65 eqeq12d ( 𝑡 = 𝑖 → ( ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ↔ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) )
67 63 66 anbi12d ( 𝑡 = 𝑖 → ( ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ↔ ( ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ∧ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) ) )
68 60 67 anbi12d ( 𝑡 = 𝑖 → ( ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ↔ ( ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) ∧ ( ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ∧ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) ) ) )
69 68 rspccva ( ( ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ∧ 𝑖 ∈ ( I ‘ 𝐴 ) ) → ( ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) ∧ ( ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ∧ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) ) )
70 56 69 sylan ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖 ∈ ( I ‘ 𝐴 ) ) → ( ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) ∧ ( ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ∧ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) ) )
71 55 70 syldan ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) ∧ ( ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ∧ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) ) )
72 71 simpld ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) )
73 iiuni ( 0 [,] 1 ) = II
74 eqid ( 𝐹𝑖 ) = ( 𝐹𝑖 )
75 73 74 cnf ( ( 𝑔𝑖 ) ∈ ( II Cn ( 𝐹𝑖 ) ) → ( 𝑔𝑖 ) : ( 0 [,] 1 ) ⟶ ( 𝐹𝑖 ) )
76 72 75 syl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( 𝑔𝑖 ) : ( 0 [,] 1 ) ⟶ ( 𝐹𝑖 ) )
77 76 feqmptd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( 𝑔𝑖 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) )
78 77 72 eqeltrrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ∈ ( II Cn ( 𝐹𝑖 ) ) )
79 14 49 50 52 78 ptcn ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ∈ ( II Cn ( ∏t𝐹 ) ) )
80 71 simprd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) ∧ ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) ) )
81 80 simpld ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( ( 𝑔𝑖 ) ‘ 0 ) = ( 𝑥𝑖 ) )
82 81 mpteq2dva ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) = ( 𝑖𝐴 ↦ ( 𝑥𝑖 ) ) )
83 0elunit 0 ∈ ( 0 [,] 1 )
84 mptexg ( 𝐴𝑉 → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) ∈ V )
85 50 84 syl ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) ∈ V )
86 fveq2 ( 𝑧 = 0 → ( ( 𝑔𝑖 ) ‘ 𝑧 ) = ( ( 𝑔𝑖 ) ‘ 0 ) )
87 86 mpteq2dv ( 𝑧 = 0 → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) = ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) )
88 eqid ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) )
89 87 88 fvmptg ( ( 0 ∈ ( 0 [,] 1 ) ∧ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) ∈ V ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) = ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) )
90 83 85 89 sylancr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) = ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 0 ) ) )
91 21 simpld ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝑥 Fn 𝐴 )
92 91 adantr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝑥 Fn 𝐴 )
93 dffn5 ( 𝑥 Fn 𝐴𝑥 = ( 𝑖𝐴 ↦ ( 𝑥𝑖 ) ) )
94 92 93 sylib ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝑥 = ( 𝑖𝐴 ↦ ( 𝑥𝑖 ) ) )
95 82 90 94 3eqtr4d ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) = 𝑥 )
96 80 simprd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) ∧ 𝑖𝐴 ) → ( ( 𝑔𝑖 ) ‘ 1 ) = ( 𝑦𝑖 ) )
97 96 mpteq2dva ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) = ( 𝑖𝐴 ↦ ( 𝑦𝑖 ) ) )
98 1elunit 1 ∈ ( 0 [,] 1 )
99 mptexg ( 𝐴𝑉 → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) ∈ V )
100 50 99 syl ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) ∈ V )
101 fveq2 ( 𝑧 = 1 → ( ( 𝑔𝑖 ) ‘ 𝑧 ) = ( ( 𝑔𝑖 ) ‘ 1 ) )
102 101 mpteq2dv ( 𝑧 = 1 → ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) = ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) )
103 102 88 fvmptg ( ( 1 ∈ ( 0 [,] 1 ) ∧ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) ∈ V ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) = ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) )
104 98 100 103 sylancr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) = ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 1 ) ) )
105 28 simpld ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → 𝑦 Fn 𝐴 )
106 105 adantr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝑦 Fn 𝐴 )
107 dffn5 ( 𝑦 Fn 𝐴𝑦 = ( 𝑖𝐴 ↦ ( 𝑦𝑖 ) ) )
108 106 107 sylib ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → 𝑦 = ( 𝑖𝐴 ↦ ( 𝑦𝑖 ) ) )
109 97 104 108 3eqtr4d ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) = 𝑦 )
110 fveq1 ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) )
111 110 eqeq1d ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) → ( ( 𝑓 ‘ 0 ) = 𝑥 ↔ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) = 𝑥 ) )
112 fveq1 ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) → ( 𝑓 ‘ 1 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) )
113 112 eqeq1d ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) → ( ( 𝑓 ‘ 1 ) = 𝑦 ↔ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) = 𝑦 ) )
114 111 113 anbi12d ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) = 𝑥 ∧ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) = 𝑦 ) ) )
115 114 rspcev ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ∈ ( II Cn ( ∏t𝐹 ) ) ∧ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 0 ) = 𝑥 ∧ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑖𝐴 ↦ ( ( 𝑔𝑖 ) ‘ 𝑧 ) ) ) ‘ 1 ) = 𝑦 ) ) → ∃ 𝑓 ∈ ( II Cn ( ∏t𝐹 ) ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
116 79 95 109 115 syl12anc ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) ∧ ( 𝑔 Fn ( I ‘ 𝐴 ) ∧ ∀ 𝑡 ∈ ( I ‘ 𝐴 ) ( ( 𝑔𝑡 ) ∈ ( II Cn ( 𝐹𝑡 ) ) ∧ ( ( ( 𝑔𝑡 ) ‘ 0 ) = ( 𝑥𝑡 ) ∧ ( ( 𝑔𝑡 ) ‘ 1 ) = ( 𝑦𝑡 ) ) ) ) ) → ∃ 𝑓 ∈ ( II Cn ( ∏t𝐹 ) ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
117 47 116 exlimddv ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) ∧ ( 𝑥 ( ∏t𝐹 ) ∧ 𝑦 ( ∏t𝐹 ) ) ) → ∃ 𝑓 ∈ ( II Cn ( ∏t𝐹 ) ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
118 117 ralrimivva ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) → ∀ 𝑥 ( ∏t𝐹 ) ∀ 𝑦 ( ∏t𝐹 ) ∃ 𝑓 ∈ ( II Cn ( ∏t𝐹 ) ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
119 eqid ( ∏t𝐹 ) = ( ∏t𝐹 )
120 119 ispconn ( ( ∏t𝐹 ) ∈ PConn ↔ ( ( ∏t𝐹 ) ∈ Top ∧ ∀ 𝑥 ( ∏t𝐹 ) ∀ 𝑦 ( ∏t𝐹 ) ∃ 𝑓 ∈ ( II Cn ( ∏t𝐹 ) ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) )
121 6 118 120 sylanbrc ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ PConn ) → ( ∏t𝐹 ) ∈ PConn )