| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indistop | ⊢ { ∅ ,  𝐴 }  ∈  Top | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  𝑥  ∈  ∪  { ∅ ,  𝐴 } ) | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 |  | n0i | ⊢ ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  →  ¬  ∪  { ∅ ,  𝐴 }  =  ∅ ) | 
						
							| 5 |  | prprc2 | ⊢ ( ¬  𝐴  ∈  V  →  { ∅ ,  𝐴 }  =  { ∅ } ) | 
						
							| 6 | 5 | unieqd | ⊢ ( ¬  𝐴  ∈  V  →  ∪  { ∅ ,  𝐴 }  =  ∪  { ∅ } ) | 
						
							| 7 | 3 | unisn | ⊢ ∪  { ∅ }  =  ∅ | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( ¬  𝐴  ∈  V  →  ∪  { ∅ ,  𝐴 }  =  ∅ ) | 
						
							| 9 | 4 8 | nsyl2 | ⊢ ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  →  𝐴  ∈  V ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  𝐴  ∈  V ) | 
						
							| 11 |  | uniprg | ⊢ ( ( ∅  ∈  V  ∧  𝐴  ∈  V )  →  ∪  { ∅ ,  𝐴 }  =  ( ∅  ∪  𝐴 ) ) | 
						
							| 12 | 3 10 11 | sylancr | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ∪  { ∅ ,  𝐴 }  =  ( ∅  ∪  𝐴 ) ) | 
						
							| 13 |  | uncom | ⊢ ( ∅  ∪  𝐴 )  =  ( 𝐴  ∪  ∅ ) | 
						
							| 14 |  | un0 | ⊢ ( 𝐴  ∪  ∅ )  =  𝐴 | 
						
							| 15 | 13 14 | eqtri | ⊢ ( ∅  ∪  𝐴 )  =  𝐴 | 
						
							| 16 | 12 15 | eqtrdi | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ∪  { ∅ ,  𝐴 }  =  𝐴 ) | 
						
							| 17 | 2 16 | eleqtrd | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  𝑥  ∈  𝐴 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  𝑦  ∈  ∪  { ∅ ,  𝐴 } ) | 
						
							| 19 | 18 16 | eleqtrd | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  𝑦  ∈  𝐴 ) | 
						
							| 20 | 17 19 | ifcld | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 )  ∈  𝐴 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  ∧  𝑧  ∈  ( 0 [,] 1 ) )  →  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 )  ∈  𝐴 ) | 
						
							| 22 | 21 | fmpttd | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) : ( 0 [,] 1 ) ⟶ 𝐴 ) | 
						
							| 23 |  | ovex | ⊢ ( 0 [,] 1 )  ∈  V | 
						
							| 24 |  | elmapg | ⊢ ( ( 𝐴  ∈  V  ∧  ( 0 [,] 1 )  ∈  V )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  ∈  ( 𝐴  ↑m  ( 0 [,] 1 ) )  ↔  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) : ( 0 [,] 1 ) ⟶ 𝐴 ) ) | 
						
							| 25 | 10 23 24 | sylancl | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  ∈  ( 𝐴  ↑m  ( 0 [,] 1 ) )  ↔  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) : ( 0 [,] 1 ) ⟶ 𝐴 ) ) | 
						
							| 26 | 22 25 | mpbird | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  ∈  ( 𝐴  ↑m  ( 0 [,] 1 ) ) ) | 
						
							| 27 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 28 |  | cnindis | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐴  ∈  V )  →  ( II  Cn  { ∅ ,  𝐴 } )  =  ( 𝐴  ↑m  ( 0 [,] 1 ) ) ) | 
						
							| 29 | 27 10 28 | sylancr | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( II  Cn  { ∅ ,  𝐴 } )  =  ( 𝐴  ↑m  ( 0 [,] 1 ) ) ) | 
						
							| 30 | 26 29 | eleqtrrd | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  ∈  ( II  Cn  { ∅ ,  𝐴 } ) ) | 
						
							| 31 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 32 |  | iftrue | ⊢ ( 𝑧  =  0  →  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 )  =  𝑥 ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) | 
						
							| 34 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 35 | 32 33 34 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 0 )  =  𝑥 ) | 
						
							| 36 | 31 35 | mp1i | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 0 )  =  𝑥 ) | 
						
							| 37 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 38 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 39 |  | neeq1 | ⊢ ( 𝑧  =  1  →  ( 𝑧  ≠  0  ↔  1  ≠  0 ) ) | 
						
							| 40 | 38 39 | mpbiri | ⊢ ( 𝑧  =  1  →  𝑧  ≠  0 ) | 
						
							| 41 |  | ifnefalse | ⊢ ( 𝑧  ≠  0  →  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 )  =  𝑦 ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝑧  =  1  →  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 )  =  𝑦 ) | 
						
							| 43 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 44 | 42 33 43 | fvmpt | ⊢ ( 1  ∈  ( 0 [,] 1 )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 1 )  =  𝑦 ) | 
						
							| 45 | 37 44 | mp1i | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 1 )  =  𝑦 ) | 
						
							| 46 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  →  ( 𝑓 ‘ 0 )  =  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 0 ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  →  ( ( 𝑓 ‘ 0 )  =  𝑥  ↔  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 0 )  =  𝑥 ) ) | 
						
							| 48 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  →  ( 𝑓 ‘ 1 )  =  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 1 ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  →  ( ( 𝑓 ‘ 1 )  =  𝑦  ↔  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 1 )  =  𝑦 ) ) | 
						
							| 50 | 47 49 | anbi12d | ⊢ ( 𝑓  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  →  ( ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ↔  ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 0 )  =  𝑥  ∧  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 51 | 50 | rspcev | ⊢ ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) )  ∈  ( II  Cn  { ∅ ,  𝐴 } )  ∧  ( ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 0 )  =  𝑥  ∧  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  if ( 𝑧  =  0 ,  𝑥 ,  𝑦 ) ) ‘ 1 )  =  𝑦 ) )  →  ∃ 𝑓  ∈  ( II  Cn  { ∅ ,  𝐴 } ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) | 
						
							| 52 | 30 36 45 51 | syl12anc | ⊢ ( ( 𝑥  ∈  ∪  { ∅ ,  𝐴 }  ∧  𝑦  ∈  ∪  { ∅ ,  𝐴 } )  →  ∃ 𝑓  ∈  ( II  Cn  { ∅ ,  𝐴 } ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) | 
						
							| 53 | 52 | rgen2 | ⊢ ∀ 𝑥  ∈  ∪  { ∅ ,  𝐴 } ∀ 𝑦  ∈  ∪  { ∅ ,  𝐴 } ∃ 𝑓  ∈  ( II  Cn  { ∅ ,  𝐴 } ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 54 |  | eqid | ⊢ ∪  { ∅ ,  𝐴 }  =  ∪  { ∅ ,  𝐴 } | 
						
							| 55 | 54 | ispconn | ⊢ ( { ∅ ,  𝐴 }  ∈  PConn  ↔  ( { ∅ ,  𝐴 }  ∈  Top  ∧  ∀ 𝑥  ∈  ∪  { ∅ ,  𝐴 } ∀ 𝑦  ∈  ∪  { ∅ ,  𝐴 } ∃ 𝑓  ∈  ( II  Cn  { ∅ ,  𝐴 } ) ( ( 𝑓 ‘ 0 )  =  𝑥  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) ) ) | 
						
							| 56 | 1 53 55 | mpbir2an | ⊢ { ∅ ,  𝐴 }  ∈  PConn |