Step |
Hyp |
Ref |
Expression |
1 |
|
indistop |
⊢ { ∅ , 𝐴 } ∈ Top |
2 |
|
simpl |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → 𝑥 ∈ ∪ { ∅ , 𝐴 } ) |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
|
n0i |
⊢ ( 𝑥 ∈ ∪ { ∅ , 𝐴 } → ¬ ∪ { ∅ , 𝐴 } = ∅ ) |
5 |
|
prprc2 |
⊢ ( ¬ 𝐴 ∈ V → { ∅ , 𝐴 } = { ∅ } ) |
6 |
5
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ { ∅ , 𝐴 } = ∪ { ∅ } ) |
7 |
3
|
unisn |
⊢ ∪ { ∅ } = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ∪ { ∅ , 𝐴 } = ∅ ) |
9 |
4 8
|
nsyl2 |
⊢ ( 𝑥 ∈ ∪ { ∅ , 𝐴 } → 𝐴 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → 𝐴 ∈ V ) |
11 |
|
uniprg |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ∪ { ∅ , 𝐴 } = ( ∅ ∪ 𝐴 ) ) |
12 |
3 10 11
|
sylancr |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ∪ { ∅ , 𝐴 } = ( ∅ ∪ 𝐴 ) ) |
13 |
|
uncom |
⊢ ( ∅ ∪ 𝐴 ) = ( 𝐴 ∪ ∅ ) |
14 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
15 |
13 14
|
eqtri |
⊢ ( ∅ ∪ 𝐴 ) = 𝐴 |
16 |
12 15
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ∪ { ∅ , 𝐴 } = 𝐴 ) |
17 |
2 16
|
eleqtrd |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → 𝑥 ∈ 𝐴 ) |
18 |
|
simpr |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → 𝑦 ∈ ∪ { ∅ , 𝐴 } ) |
19 |
18 16
|
eleqtrd |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → 𝑦 ∈ 𝐴 ) |
20 |
17 19
|
ifcld |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ∈ 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ∈ 𝐴 ) |
22 |
21
|
fmpttd |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) : ( 0 [,] 1 ) ⟶ 𝐴 ) |
23 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
24 |
|
elmapg |
⊢ ( ( 𝐴 ∈ V ∧ ( 0 [,] 1 ) ∈ V ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ∈ ( 𝐴 ↑m ( 0 [,] 1 ) ) ↔ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) : ( 0 [,] 1 ) ⟶ 𝐴 ) ) |
25 |
10 23 24
|
sylancl |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ∈ ( 𝐴 ↑m ( 0 [,] 1 ) ) ↔ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) : ( 0 [,] 1 ) ⟶ 𝐴 ) ) |
26 |
22 25
|
mpbird |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ∈ ( 𝐴 ↑m ( 0 [,] 1 ) ) ) |
27 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
28 |
|
cnindis |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐴 ∈ V ) → ( II Cn { ∅ , 𝐴 } ) = ( 𝐴 ↑m ( 0 [,] 1 ) ) ) |
29 |
27 10 28
|
sylancr |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( II Cn { ∅ , 𝐴 } ) = ( 𝐴 ↑m ( 0 [,] 1 ) ) ) |
30 |
26 29
|
eleqtrrd |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ∈ ( II Cn { ∅ , 𝐴 } ) ) |
31 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
32 |
|
iftrue |
⊢ ( 𝑧 = 0 → if ( 𝑧 = 0 , 𝑥 , 𝑦 ) = 𝑥 ) |
33 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) |
34 |
|
vex |
⊢ 𝑥 ∈ V |
35 |
32 33 34
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 0 ) = 𝑥 ) |
36 |
31 35
|
mp1i |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 0 ) = 𝑥 ) |
37 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
38 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
39 |
|
neeq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ≠ 0 ↔ 1 ≠ 0 ) ) |
40 |
38 39
|
mpbiri |
⊢ ( 𝑧 = 1 → 𝑧 ≠ 0 ) |
41 |
|
ifnefalse |
⊢ ( 𝑧 ≠ 0 → if ( 𝑧 = 0 , 𝑥 , 𝑦 ) = 𝑦 ) |
42 |
40 41
|
syl |
⊢ ( 𝑧 = 1 → if ( 𝑧 = 0 , 𝑥 , 𝑦 ) = 𝑦 ) |
43 |
|
vex |
⊢ 𝑦 ∈ V |
44 |
42 33 43
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 1 ) = 𝑦 ) |
45 |
37 44
|
mp1i |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 1 ) = 𝑦 ) |
46 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 0 ) ) |
47 |
46
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) → ( ( 𝑓 ‘ 0 ) = 𝑥 ↔ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 0 ) = 𝑥 ) ) |
48 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) → ( 𝑓 ‘ 1 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 1 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) → ( ( 𝑓 ‘ 1 ) = 𝑦 ↔ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 1 ) = 𝑦 ) ) |
50 |
47 49
|
anbi12d |
⊢ ( 𝑓 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 0 ) = 𝑥 ∧ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 1 ) = 𝑦 ) ) ) |
51 |
50
|
rspcev |
⊢ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ∈ ( II Cn { ∅ , 𝐴 } ) ∧ ( ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 0 ) = 𝑥 ∧ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑧 = 0 , 𝑥 , 𝑦 ) ) ‘ 1 ) = 𝑦 ) ) → ∃ 𝑓 ∈ ( II Cn { ∅ , 𝐴 } ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) |
52 |
30 36 45 51
|
syl12anc |
⊢ ( ( 𝑥 ∈ ∪ { ∅ , 𝐴 } ∧ 𝑦 ∈ ∪ { ∅ , 𝐴 } ) → ∃ 𝑓 ∈ ( II Cn { ∅ , 𝐴 } ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) |
53 |
52
|
rgen2 |
⊢ ∀ 𝑥 ∈ ∪ { ∅ , 𝐴 } ∀ 𝑦 ∈ ∪ { ∅ , 𝐴 } ∃ 𝑓 ∈ ( II Cn { ∅ , 𝐴 } ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) |
54 |
|
eqid |
⊢ ∪ { ∅ , 𝐴 } = ∪ { ∅ , 𝐴 } |
55 |
54
|
ispconn |
⊢ ( { ∅ , 𝐴 } ∈ PConn ↔ ( { ∅ , 𝐴 } ∈ Top ∧ ∀ 𝑥 ∈ ∪ { ∅ , 𝐴 } ∀ 𝑦 ∈ ∪ { ∅ , 𝐴 } ∃ 𝑓 ∈ ( II Cn { ∅ , 𝐴 } ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
56 |
1 53 55
|
mpbir2an |
⊢ { ∅ , 𝐴 } ∈ PConn |