Metamath Proof Explorer


Theorem connpconn

Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015)

Ref Expression
Assertion connpconn ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) → 𝐽 ∈ PConn )

Proof

Step Hyp Ref Expression
1 conntop ( 𝐽 ∈ Conn → 𝐽 ∈ Top )
2 1 adantr ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) → 𝐽 ∈ Top )
3 eqid 𝐽 = 𝐽
4 simpll ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → 𝐽 ∈ Conn )
5 inss1 ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ 𝐽
6 simplr ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → 𝐽 ∈ 𝑛-Locally PConn )
7 1 ad2antrr ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → 𝐽 ∈ Top )
8 3 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
9 7 8 syl ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → 𝐽𝐽 )
10 simprr ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → 𝑧 𝐽 )
11 nlly2i ( ( 𝐽 ∈ 𝑛-Locally PConn ∧ 𝐽𝐽𝑧 𝐽 ) → ∃ 𝑠 ∈ 𝒫 𝐽𝑢𝐽 ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) )
12 6 9 10 11 syl3anc ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → ∃ 𝑠 ∈ 𝒫 𝐽𝑢𝐽 ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) )
13 simprr1 ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) → 𝑧𝑢 )
14 eqeq2 ( 𝑦 = 𝑤 → ( ( 𝑓 ‘ 1 ) = 𝑦 ↔ ( 𝑓 ‘ 1 ) = 𝑤 ) )
15 14 anbi2d ( 𝑦 = 𝑤 → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) ) )
16 15 rexbidv ( 𝑦 = 𝑤 → ( ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) ) )
17 16 elrab ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ↔ ( 𝑤 𝐽 ∧ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) ) )
18 17 simprbi ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) )
19 simprr3 ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) → ( 𝐽t 𝑠 ) ∈ PConn )
20 19 adantr ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → ( 𝐽t 𝑠 ) ∈ PConn )
21 simprr2 ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) → 𝑢𝑠 )
22 21 adantr ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑢𝑠 )
23 simprll ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑤𝑢 )
24 22 23 sseldd ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑤𝑠 )
25 7 ad2antrr ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝐽 ∈ Top )
26 elpwi ( 𝑠 ∈ 𝒫 𝐽𝑠 𝐽 )
27 26 ad2antrl ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) → 𝑠 𝐽 )
28 27 adantr ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑠 𝐽 )
29 3 restuni ( ( 𝐽 ∈ Top ∧ 𝑠 𝐽 ) → 𝑠 = ( 𝐽t 𝑠 ) )
30 25 28 29 syl2anc ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑠 = ( 𝐽t 𝑠 ) )
31 24 30 eleqtrd ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑤 ( 𝐽t 𝑠 ) )
32 simprr ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑦𝑢 )
33 22 32 sseldd ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑦𝑠 )
34 33 30 eleqtrd ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → 𝑦 ( 𝐽t 𝑠 ) )
35 eqid ( 𝐽t 𝑠 ) = ( 𝐽t 𝑠 )
36 35 pconncn ( ( ( 𝐽t 𝑠 ) ∈ PConn ∧ 𝑤 ( 𝐽t 𝑠 ) ∧ 𝑦 ( 𝐽t 𝑠 ) ) → ∃ ∈ ( II Cn ( 𝐽t 𝑠 ) ) ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) )
37 20 31 34 36 syl3anc ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → ∃ ∈ ( II Cn ( 𝐽t 𝑠 ) ) ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) )
38 simplrl ( ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) → 𝑔 ∈ ( II Cn 𝐽 ) )
39 38 ad2antlr ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → 𝑔 ∈ ( II Cn 𝐽 ) )
40 25 adantr ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → 𝐽 ∈ Top )
41 cnrest2r ( 𝐽 ∈ Top → ( II Cn ( 𝐽t 𝑠 ) ) ⊆ ( II Cn 𝐽 ) )
42 40 41 syl ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( II Cn ( 𝐽t 𝑠 ) ) ⊆ ( II Cn 𝐽 ) )
43 simprl ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ∈ ( II Cn ( 𝐽t 𝑠 ) ) )
44 42 43 sseldd ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ∈ ( II Cn 𝐽 ) )
45 simplrr ( ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) → ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) )
46 45 ad2antlr ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) )
47 46 simprd ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( 𝑔 ‘ 1 ) = 𝑤 )
48 simprrl ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ‘ 0 ) = 𝑤 )
49 47 48 eqtr4d ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( 𝑔 ‘ 1 ) = ( ‘ 0 ) )
50 39 44 49 pcocn ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( 𝑔 ( *𝑝𝐽 ) ) ∈ ( II Cn 𝐽 ) )
51 39 44 pco0 ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 0 ) = ( 𝑔 ‘ 0 ) )
52 46 simpld ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( 𝑔 ‘ 0 ) = 𝑥 )
53 51 52 eqtrd ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 0 ) = 𝑥 )
54 39 44 pco1 ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 1 ) = ( ‘ 1 ) )
55 simprrr ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ‘ 1 ) = 𝑦 )
56 54 55 eqtrd ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 1 ) = 𝑦 )
57 fveq1 ( 𝑓 = ( 𝑔 ( *𝑝𝐽 ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 0 ) )
58 57 eqeq1d ( 𝑓 = ( 𝑔 ( *𝑝𝐽 ) ) → ( ( 𝑓 ‘ 0 ) = 𝑥 ↔ ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 0 ) = 𝑥 ) )
59 fveq1 ( 𝑓 = ( 𝑔 ( *𝑝𝐽 ) ) → ( 𝑓 ‘ 1 ) = ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 1 ) )
60 59 eqeq1d ( 𝑓 = ( 𝑔 ( *𝑝𝐽 ) ) → ( ( 𝑓 ‘ 1 ) = 𝑦 ↔ ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 1 ) = 𝑦 ) )
61 58 60 anbi12d ( 𝑓 = ( 𝑔 ( *𝑝𝐽 ) ) → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 0 ) = 𝑥 ∧ ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 1 ) = 𝑦 ) ) )
62 61 rspcev ( ( ( 𝑔 ( *𝑝𝐽 ) ) ∈ ( II Cn 𝐽 ) ∧ ( ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 0 ) = 𝑥 ∧ ( ( 𝑔 ( *𝑝𝐽 ) ) ‘ 1 ) = 𝑦 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
63 50 53 56 62 syl12anc ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) ∧ ( ∈ ( II Cn ( 𝐽t 𝑠 ) ) ∧ ( ( ‘ 0 ) = 𝑤 ∧ ( ‘ 1 ) = 𝑦 ) ) ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
64 37 63 rexlimddv ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ∧ 𝑦𝑢 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
65 64 anassrs ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ) ∧ 𝑦𝑢 ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
66 65 ralrimiva ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ ( 𝑤𝑢 ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) ) → ∀ 𝑦𝑢𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
67 66 anassrs ( ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) ∧ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) ) → ∀ 𝑦𝑢𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
68 67 rexlimdvaa ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → ( ∃ 𝑔 ∈ ( II Cn 𝐽 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) → ∀ 𝑦𝑢𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) )
69 21 adantr ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → 𝑢𝑠 )
70 simplrl ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → 𝑠 ∈ 𝒫 𝐽 )
71 70 26 syl ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → 𝑠 𝐽 )
72 69 71 sstrd ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → 𝑢 𝐽 )
73 68 72 jctild ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → ( ∃ 𝑔 ∈ ( II Cn 𝐽 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) → ( 𝑢 𝐽 ∧ ∀ 𝑦𝑢𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) )
74 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ 0 ) = ( 𝑔 ‘ 0 ) )
75 74 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 0 ) = 𝑥 ↔ ( 𝑔 ‘ 0 ) = 𝑥 ) )
76 fveq1 ( 𝑓 = 𝑔 → ( 𝑓 ‘ 1 ) = ( 𝑔 ‘ 1 ) )
77 76 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 1 ) = 𝑤 ↔ ( 𝑔 ‘ 1 ) = 𝑤 ) )
78 75 77 anbi12d ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) ↔ ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) ) )
79 78 cbvrexvw ( ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) ↔ ∃ 𝑔 ∈ ( II Cn 𝐽 ) ( ( 𝑔 ‘ 0 ) = 𝑥 ∧ ( 𝑔 ‘ 1 ) = 𝑤 ) )
80 ssrab ( 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ↔ ( 𝑢 𝐽 ∧ ∀ 𝑦𝑢𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) )
81 73 79 80 3imtr4g ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → ( ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑤 ) → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) )
82 18 81 syl5 ( ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) ∧ 𝑤𝑢 ) → ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) )
83 82 ralrimiva ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) → ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) )
84 13 83 jca ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐽 ∧ ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) ) ) → ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) )
85 84 expr ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ 𝑠 ∈ 𝒫 𝐽 ) → ( ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) → ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) ) )
86 85 reximdv ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) ∧ 𝑠 ∈ 𝒫 𝐽 ) → ( ∃ 𝑢𝐽 ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) → ∃ 𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) ) )
87 86 rexlimdva ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → ( ∃ 𝑠 ∈ 𝒫 𝐽𝑢𝐽 ( 𝑧𝑢𝑢𝑠 ∧ ( 𝐽t 𝑠 ) ∈ PConn ) → ∃ 𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) ) )
88 12 87 mpd ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ ( 𝑥 𝐽𝑧 𝐽 ) ) → ∃ 𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) )
89 88 anassrs ( ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) ∧ 𝑧 𝐽 ) → ∃ 𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) )
90 89 ralrimiva ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ∀ 𝑧 𝐽𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) )
91 1 ad2antrr ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → 𝐽 ∈ Top )
92 ssrab2 { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ⊆ 𝐽
93 3 isclo2 ( ( 𝐽 ∈ Top ∧ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ⊆ 𝐽 ) → ( { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑧 𝐽𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) ) )
94 91 92 93 sylancl ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ( { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑧 𝐽𝑢𝐽 ( 𝑧𝑢 ∧ ∀ 𝑤𝑢 ( 𝑤 ∈ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } → 𝑢 ⊆ { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ) ) ) )
95 90 94 mpbird ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) )
96 5 95 sseldi ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ∈ 𝐽 )
97 simpr ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → 𝑥 𝐽 )
98 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
99 98 a1i ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) )
100 3 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
101 91 100 sylib ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
102 cnconst2 ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝐽 ) ∧ 𝑥 𝐽 ) → ( ( 0 [,] 1 ) × { 𝑥 } ) ∈ ( II Cn 𝐽 ) )
103 99 101 97 102 syl3anc ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ( ( 0 [,] 1 ) × { 𝑥 } ) ∈ ( II Cn 𝐽 ) )
104 0elunit 0 ∈ ( 0 [,] 1 )
105 vex 𝑥 ∈ V
106 105 fvconst2 ( 0 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 0 ) = 𝑥 )
107 104 106 mp1i ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 0 ) = 𝑥 )
108 1elunit 1 ∈ ( 0 [,] 1 )
109 105 fvconst2 ( 1 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 1 ) = 𝑥 )
110 108 109 mp1i ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 1 ) = 𝑥 )
111 eqeq2 ( 𝑦 = 𝑥 → ( ( 𝑓 ‘ 1 ) = 𝑦 ↔ ( 𝑓 ‘ 1 ) = 𝑥 ) )
112 111 anbi2d ( 𝑦 = 𝑥 → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ↔ ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) )
113 fveq1 ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑥 } ) → ( 𝑓 ‘ 0 ) = ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 0 ) )
114 113 eqeq1d ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑥 } ) → ( ( 𝑓 ‘ 0 ) = 𝑥 ↔ ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 0 ) = 𝑥 ) )
115 fveq1 ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑥 } ) → ( 𝑓 ‘ 1 ) = ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 1 ) )
116 115 eqeq1d ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑥 } ) → ( ( 𝑓 ‘ 1 ) = 𝑥 ↔ ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 1 ) = 𝑥 ) )
117 114 116 anbi12d ( 𝑓 = ( ( 0 [,] 1 ) × { 𝑥 } ) → ( ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ( ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 0 ) = 𝑥 ∧ ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 1 ) = 𝑥 ) ) )
118 112 117 rspc2ev ( ( 𝑥 𝐽 ∧ ( ( 0 [,] 1 ) × { 𝑥 } ) ∈ ( II Cn 𝐽 ) ∧ ( ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 0 ) = 𝑥 ∧ ( ( ( 0 [,] 1 ) × { 𝑥 } ) ‘ 1 ) = 𝑥 ) ) → ∃ 𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
119 97 103 107 110 118 syl112anc ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ∃ 𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
120 rabn0 ( { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ≠ ∅ ↔ ∃ 𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
121 119 120 sylibr ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ≠ ∅ )
122 inss2 ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ⊆ ( Clsd ‘ 𝐽 )
123 122 95 sseldi ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ∈ ( Clsd ‘ 𝐽 ) )
124 3 4 96 121 123 connclo ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } = 𝐽 )
125 124 eqcomd ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → 𝐽 = { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } )
126 rabid2 ( 𝐽 = { 𝑦 𝐽 ∣ ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) } ↔ ∀ 𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
127 125 126 sylib ( ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) ∧ 𝑥 𝐽 ) → ∀ 𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
128 127 ralrimiva ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) → ∀ 𝑥 𝐽𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) )
129 3 ispconn ( 𝐽 ∈ PConn ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 𝐽𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) )
130 2 128 129 sylanbrc ( ( 𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn ) → 𝐽 ∈ PConn )