| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conntop |
|
| 2 |
1
|
adantr |
|
| 3 |
|
eqid |
|
| 4 |
|
simpll |
|
| 5 |
|
inss1 |
|
| 6 |
|
simplr |
|
| 7 |
1
|
ad2antrr |
|
| 8 |
3
|
topopn |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
simprr |
|
| 11 |
|
nlly2i |
|
| 12 |
6 9 10 11
|
syl3anc |
|
| 13 |
|
simprr1 |
|
| 14 |
|
eqeq2 |
|
| 15 |
14
|
anbi2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
16
|
elrab |
|
| 18 |
17
|
simprbi |
|
| 19 |
|
simprr3 |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simprr2 |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simprll |
|
| 24 |
22 23
|
sseldd |
|
| 25 |
7
|
ad2antrr |
|
| 26 |
|
elpwi |
|
| 27 |
26
|
ad2antrl |
|
| 28 |
27
|
adantr |
|
| 29 |
3
|
restuni |
|
| 30 |
25 28 29
|
syl2anc |
|
| 31 |
24 30
|
eleqtrd |
|
| 32 |
|
simprr |
|
| 33 |
22 32
|
sseldd |
|
| 34 |
33 30
|
eleqtrd |
|
| 35 |
|
eqid |
|
| 36 |
35
|
pconncn |
|
| 37 |
20 31 34 36
|
syl3anc |
|
| 38 |
|
simplrl |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
25
|
adantr |
|
| 41 |
|
cnrest2r |
|
| 42 |
40 41
|
syl |
|
| 43 |
|
simprl |
|
| 44 |
42 43
|
sseldd |
|
| 45 |
|
simplrr |
|
| 46 |
45
|
ad2antlr |
|
| 47 |
46
|
simprd |
|
| 48 |
|
simprrl |
|
| 49 |
47 48
|
eqtr4d |
|
| 50 |
39 44 49
|
pcocn |
|
| 51 |
39 44
|
pco0 |
|
| 52 |
46
|
simpld |
|
| 53 |
51 52
|
eqtrd |
|
| 54 |
39 44
|
pco1 |
|
| 55 |
|
simprrr |
|
| 56 |
54 55
|
eqtrd |
|
| 57 |
|
fveq1 |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
|
fveq1 |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
58 60
|
anbi12d |
|
| 62 |
61
|
rspcev |
|
| 63 |
50 53 56 62
|
syl12anc |
|
| 64 |
37 63
|
rexlimddv |
|
| 65 |
64
|
anassrs |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
66
|
anassrs |
|
| 68 |
67
|
rexlimdvaa |
|
| 69 |
21
|
adantr |
|
| 70 |
|
simplrl |
|
| 71 |
70 26
|
syl |
|
| 72 |
69 71
|
sstrd |
|
| 73 |
68 72
|
jctild |
|
| 74 |
|
fveq1 |
|
| 75 |
74
|
eqeq1d |
|
| 76 |
|
fveq1 |
|
| 77 |
76
|
eqeq1d |
|
| 78 |
75 77
|
anbi12d |
|
| 79 |
78
|
cbvrexvw |
|
| 80 |
|
ssrab |
|
| 81 |
73 79 80
|
3imtr4g |
|
| 82 |
18 81
|
syl5 |
|
| 83 |
82
|
ralrimiva |
|
| 84 |
13 83
|
jca |
|
| 85 |
84
|
expr |
|
| 86 |
85
|
reximdv |
|
| 87 |
86
|
rexlimdva |
|
| 88 |
12 87
|
mpd |
|
| 89 |
88
|
anassrs |
|
| 90 |
89
|
ralrimiva |
|
| 91 |
1
|
ad2antrr |
|
| 92 |
|
ssrab2 |
|
| 93 |
3
|
isclo2 |
|
| 94 |
91 92 93
|
sylancl |
|
| 95 |
90 94
|
mpbird |
|
| 96 |
5 95
|
sselid |
|
| 97 |
|
simpr |
|
| 98 |
|
iitopon |
|
| 99 |
98
|
a1i |
|
| 100 |
3
|
toptopon |
|
| 101 |
91 100
|
sylib |
|
| 102 |
|
cnconst2 |
|
| 103 |
99 101 97 102
|
syl3anc |
|
| 104 |
|
0elunit |
|
| 105 |
|
vex |
|
| 106 |
105
|
fvconst2 |
|
| 107 |
104 106
|
mp1i |
|
| 108 |
|
1elunit |
|
| 109 |
105
|
fvconst2 |
|
| 110 |
108 109
|
mp1i |
|
| 111 |
|
eqeq2 |
|
| 112 |
111
|
anbi2d |
|
| 113 |
|
fveq1 |
|
| 114 |
113
|
eqeq1d |
|
| 115 |
|
fveq1 |
|
| 116 |
115
|
eqeq1d |
|
| 117 |
114 116
|
anbi12d |
|
| 118 |
112 117
|
rspc2ev |
|
| 119 |
97 103 107 110 118
|
syl112anc |
|
| 120 |
|
rabn0 |
|
| 121 |
119 120
|
sylibr |
|
| 122 |
|
inss2 |
|
| 123 |
122 95
|
sselid |
|
| 124 |
3 4 96 121 123
|
connclo |
|
| 125 |
124
|
eqcomd |
|
| 126 |
|
rabid2 |
|
| 127 |
125 126
|
sylib |
|
| 128 |
127
|
ralrimiva |
|
| 129 |
3
|
ispconn |
|
| 130 |
2 128 129
|
sylanbrc |
|