Step |
Hyp |
Ref |
Expression |
1 |
|
isclo.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
isclo |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
3 |
|
eleq1w |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
4 |
3
|
bibi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
7 |
|
pm4.24 |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
8 |
|
raaanv |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
9 |
6 7 8
|
3bitr4i |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
10 |
|
bibi1 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
12 |
11
|
biimpcd |
⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) ) |
13 |
12
|
ralimdv |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ∀ 𝑤 ∈ 𝑦 𝑤 ∈ 𝐴 ) ) |
14 |
13
|
com12 |
⊢ ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐴 → ∀ 𝑤 ∈ 𝑦 𝑤 ∈ 𝐴 ) ) |
15 |
|
dfss3 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑤 ∈ 𝑦 𝑤 ∈ 𝐴 ) |
16 |
14 15
|
syl6ibr |
⊢ ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
17 |
16
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
18 |
9 17
|
sylbi |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
19 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
20 |
19
|
imbi1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
21 |
20
|
rspcv |
⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
22 |
|
dfss3 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) |
23 |
22
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) ) |
24 |
|
r19.21v |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) ) |
25 |
23 24
|
bitr4i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) |
26 |
21 25
|
syl6ib |
⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) |
27 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐴 ) ) |
28 |
27
|
com12 |
⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
29 |
28
|
imim2d |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
30 |
29
|
ralimdv |
⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
31 |
26 30
|
jcad |
⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) ) |
32 |
|
ralbiim |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
33 |
31 32
|
syl6ibr |
⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
34 |
18 33
|
impbid2 |
⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
35 |
34
|
pm5.32i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
36 |
35
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
37 |
36
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
38 |
2 37
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) ) |