| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difss |
⊢ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 |
| 2 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) |
| 3 |
1 2
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 4 |
|
distop |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |
| 5 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 6 |
5
|
eqcomi |
⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 7 |
6
|
iscld |
⊢ ( 𝒫 𝐴 ∈ Top → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) |
| 9 |
3 8
|
mpbiran2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) ) |
| 10 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
| 11 |
9 10
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Clsd ‘ 𝒫 𝐴 ) ↔ 𝑥 ∈ 𝒫 𝐴 ) ) |
| 12 |
11
|
eqrdv |
⊢ ( 𝐴 ∈ 𝑉 → ( Clsd ‘ 𝒫 𝐴 ) = 𝒫 𝐴 ) |