Metamath Proof Explorer


Theorem discld

Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007) (Revised by Mario Carneiro, 7-Apr-2015)

Ref Expression
Assertion discld AVClsd𝒫A=𝒫A

Proof

Step Hyp Ref Expression
1 difss AxA
2 elpw2g AVAx𝒫AAxA
3 1 2 mpbiri AVAx𝒫A
4 distop AV𝒫ATop
5 unipw 𝒫A=A
6 5 eqcomi A=𝒫A
7 6 iscld 𝒫ATopxClsd𝒫AxAAx𝒫A
8 4 7 syl AVxClsd𝒫AxAAx𝒫A
9 3 8 mpbiran2d AVxClsd𝒫AxA
10 velpw x𝒫AxA
11 9 10 bitr4di AVxClsd𝒫Ax𝒫A
12 11 eqrdv AVClsd𝒫A=𝒫A