Metamath Proof Explorer


Theorem pconntop

Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion pconntop ( 𝐽 ∈ PConn → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 ispconn ( 𝐽 ∈ PConn ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 𝐽𝑦 𝐽𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) )
3 2 simplbi ( 𝐽 ∈ PConn → 𝐽 ∈ Top )