Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pconntop | ⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ispconn | ⊢ ( 𝐽 ∈ PConn ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑥 ∧ ( 𝑓 ‘ 1 ) = 𝑦 ) ) ) |
3 | 2 | simplbi | ⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Top ) |