Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
2 |
|
n0 |
⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝑥 ) |
3 |
|
n0 |
⊢ ( 𝑦 ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ 𝑦 ) |
4 |
2 3
|
anbi12i |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ↔ ( ∃ 𝑎 𝑎 ∈ 𝑥 ∧ ∃ 𝑏 𝑏 ∈ 𝑦 ) ) |
5 |
|
exdistrv |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ↔ ( ∃ 𝑎 𝑎 ∈ 𝑥 ∧ ∃ 𝑏 𝑏 ∈ 𝑦 ) ) |
6 |
4 5
|
bitr4i |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ) |
7 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝐽 ∈ PConn ) |
8 |
|
simprll |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑎 ∈ 𝑥 ) |
9 |
|
simplrl |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑥 ∈ 𝐽 ) |
10 |
|
elunii |
⊢ ( ( 𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝐽 ) → 𝑎 ∈ ∪ 𝐽 ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑎 ∈ ∪ 𝐽 ) |
12 |
|
simprlr |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑏 ∈ 𝑦 ) |
13 |
|
simplrr |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑦 ∈ 𝐽 ) |
14 |
|
elunii |
⊢ ( ( 𝑏 ∈ 𝑦 ∧ 𝑦 ∈ 𝐽 ) → 𝑏 ∈ ∪ 𝐽 ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑏 ∈ ∪ 𝐽 ) |
16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
17 |
16
|
pconncn |
⊢ ( ( 𝐽 ∈ PConn ∧ 𝑎 ∈ ∪ 𝐽 ∧ 𝑏 ∈ ∪ 𝐽 ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) |
18 |
7 11 15 17
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ∃ 𝑓 ∈ ( II Cn 𝐽 ) ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) |
19 |
|
simplrr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
20 |
|
simplrr |
⊢ ( ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) → ( 𝑓 ‘ 1 ) = 𝑏 ) |
21 |
20
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑓 ‘ 1 ) = 𝑏 ) |
22 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
23 |
|
iiconn |
⊢ II ∈ Conn |
24 |
23
|
a1i |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → II ∈ Conn ) |
25 |
|
simprll |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
26 |
9
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑥 ∈ 𝐽 ) |
27 |
|
uncom |
⊢ ( 𝑦 ∪ 𝑥 ) = ( 𝑥 ∪ 𝑦 ) |
28 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) |
29 |
27 28
|
syl5eq |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑦 ∪ 𝑥 ) = ∪ 𝐽 ) |
30 |
13
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑦 ∈ 𝐽 ) |
31 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽 ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
33 |
|
incom |
⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) |
34 |
33 19
|
syl5eq |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑦 ∩ 𝑥 ) = ∅ ) |
35 |
|
uneqdifeq |
⊢ ( ( 𝑦 ⊆ ∪ 𝐽 ∧ ( 𝑦 ∩ 𝑥 ) = ∅ ) → ( ( 𝑦 ∪ 𝑥 ) = ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑦 ) = 𝑥 ) ) |
36 |
32 34 35
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( ( 𝑦 ∪ 𝑥 ) = ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑦 ) = 𝑥 ) ) |
37 |
29 36
|
mpbid |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑦 ) = 𝑥 ) |
38 |
|
pconntop |
⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Top ) |
39 |
38
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝐽 ∈ Top ) |
40 |
16
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
41 |
39 30 40
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
42 |
37 41
|
eqeltrrd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) |
43 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
44 |
43
|
a1i |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 0 ∈ ( 0 [,] 1 ) ) |
45 |
|
simplrl |
⊢ ( ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) → ( 𝑓 ‘ 0 ) = 𝑎 ) |
46 |
45
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑓 ‘ 0 ) = 𝑎 ) |
47 |
8
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑎 ∈ 𝑥 ) |
48 |
46 47
|
eqeltrd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑥 ) |
49 |
22 24 25 26 42 44 48
|
conncn |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ 𝑥 ) |
50 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
51 |
|
ffvelrn |
⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑥 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 1 ) ∈ 𝑥 ) |
52 |
49 50 51
|
sylancl |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑓 ‘ 1 ) ∈ 𝑥 ) |
53 |
21 52
|
eqeltrrd |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑏 ∈ 𝑥 ) |
54 |
12
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → 𝑏 ∈ 𝑦 ) |
55 |
|
inelcm |
⊢ ( ( 𝑏 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
56 |
53 54 55
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
57 |
19 56
|
pm2.21ddne |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ∧ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) → ¬ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) |
58 |
57
|
expr |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ) → ( ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 → ¬ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) ) |
59 |
58
|
pm2.01d |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ) → ¬ ( 𝑥 ∪ 𝑦 ) = ∪ 𝐽 ) |
60 |
59
|
neqned |
⊢ ( ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ∧ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝑓 ‘ 0 ) = 𝑎 ∧ ( 𝑓 ‘ 1 ) = 𝑏 ) ) ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) |
61 |
18 60
|
rexlimddv |
⊢ ( ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) ∧ ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) |
62 |
61
|
exp32 |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
63 |
62
|
exlimdvv |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦 ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
64 |
6 63
|
syl5bi |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
65 |
64
|
impd |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) |
66 |
1 65
|
syl5bi |
⊢ ( ( 𝐽 ∈ PConn ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) |
67 |
66
|
ralrimivva |
⊢ ( 𝐽 ∈ PConn → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) |
68 |
16
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
69 |
38 68
|
sylib |
⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
70 |
|
dfconn2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐽 ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
71 |
69 70
|
syl |
⊢ ( 𝐽 ∈ PConn → ( 𝐽 ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( 𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∪ 𝑦 ) ≠ ∪ 𝐽 ) ) ) |
72 |
67 71
|
mpbird |
⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Conn ) |