| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issconn |
|- ( J e. SConn <-> ( J e. PConn /\ A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) |
| 2 |
|
fveq1 |
|- ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) |
| 3 |
|
fveq1 |
|- ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) |
| 4 |
2 3
|
eqeq12d |
|- ( f = F -> ( ( f ` 0 ) = ( f ` 1 ) <-> ( F ` 0 ) = ( F ` 1 ) ) ) |
| 5 |
|
id |
|- ( f = F -> f = F ) |
| 6 |
2
|
sneqd |
|- ( f = F -> { ( f ` 0 ) } = { ( F ` 0 ) } ) |
| 7 |
6
|
xpeq2d |
|- ( f = F -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |
| 8 |
5 7
|
breq12d |
|- ( f = F -> ( f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) <-> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) |
| 9 |
4 8
|
imbi12d |
|- ( f = F -> ( ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) <-> ( ( F ` 0 ) = ( F ` 1 ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) ) |
| 10 |
9
|
rspccv |
|- ( A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) -> ( F e. ( II Cn J ) -> ( ( F ` 0 ) = ( F ` 1 ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) ) |
| 11 |
1 10
|
simplbiim |
|- ( J e. SConn -> ( F e. ( II Cn J ) -> ( ( F ` 0 ) = ( F ` 1 ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) ) |
| 12 |
11
|
3imp |
|- ( ( J e. SConn /\ F e. ( II Cn J ) /\ ( F ` 0 ) = ( F ` 1 ) ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |