| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issconn |  |-  ( J e. SConn <-> ( J e. PConn /\ A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) | 
						
							| 2 |  | fveq1 |  |-  ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) | 
						
							| 3 |  | fveq1 |  |-  ( f = F -> ( f ` 1 ) = ( F ` 1 ) ) | 
						
							| 4 | 2 3 | eqeq12d |  |-  ( f = F -> ( ( f ` 0 ) = ( f ` 1 ) <-> ( F ` 0 ) = ( F ` 1 ) ) ) | 
						
							| 5 |  | id |  |-  ( f = F -> f = F ) | 
						
							| 6 | 2 | sneqd |  |-  ( f = F -> { ( f ` 0 ) } = { ( F ` 0 ) } ) | 
						
							| 7 | 6 | xpeq2d |  |-  ( f = F -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) | 
						
							| 8 | 5 7 | breq12d |  |-  ( f = F -> ( f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) <-> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) | 
						
							| 9 | 4 8 | imbi12d |  |-  ( f = F -> ( ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) <-> ( ( F ` 0 ) = ( F ` 1 ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) ) | 
						
							| 10 | 9 | rspccv |  |-  ( A. f e. ( II Cn J ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) -> ( F e. ( II Cn J ) -> ( ( F ` 0 ) = ( F ` 1 ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) ) | 
						
							| 11 | 1 10 | simplbiim |  |-  ( J e. SConn -> ( F e. ( II Cn J ) -> ( ( F ` 0 ) = ( F ` 1 ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( J e. SConn /\ F e. ( II Cn J ) /\ ( F ` 0 ) = ( F ` 1 ) ) -> F ( ~=ph ` J ) ( ( 0 [,] 1 ) X. { ( F ` 0 ) } ) ) |