Metamath Proof Explorer


Theorem sconntop

Description: A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion sconntop
|- ( J e. SConn -> J e. Top )

Proof

Step Hyp Ref Expression
1 sconnpconn
 |-  ( J e. SConn -> J e. PConn )
2 pconntop
 |-  ( J e. PConn -> J e. Top )
3 1 2 syl
 |-  ( J e. SConn -> J e. Top )