Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
|- ( ph -> S C_ CC ) |
2 |
|
cvxpconn.2 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
3 |
|
cvxpconn.3 |
|- J = ( TopOpen ` CCfld ) |
4 |
|
cvxpconn.4 |
|- K = ( J |`t S ) |
5 |
1 2 3 4
|
cvxpconn |
|- ( ph -> K e. PConn ) |
6 |
|
simprl |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f e. ( II Cn K ) ) |
7 |
|
pconntop |
|- ( K e. PConn -> K e. Top ) |
8 |
5 7
|
syl |
|- ( ph -> K e. Top ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> K e. Top ) |
10 |
|
toptopon2 |
|- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
11 |
9 10
|
sylib |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> K e. ( TopOn ` U. K ) ) |
12 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
13 |
|
eqid |
|- U. K = U. K |
14 |
12 13
|
cnf |
|- ( f e. ( II Cn K ) -> f : ( 0 [,] 1 ) --> U. K ) |
15 |
6 14
|
syl |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f : ( 0 [,] 1 ) --> U. K ) |
16 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
17 |
|
ffvelcdm |
|- ( ( f : ( 0 [,] 1 ) --> U. K /\ 0 e. ( 0 [,] 1 ) ) -> ( f ` 0 ) e. U. K ) |
18 |
15 16 17
|
sylancl |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) e. U. K ) |
19 |
|
eqid |
|- ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) = ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) |
20 |
19
|
pcoptcl |
|- ( ( K e. ( TopOn ` U. K ) /\ ( f ` 0 ) e. U. K ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn K ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) ) |
21 |
11 18 20
|
syl2anc |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn K ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 0 ) = ( f ` 0 ) /\ ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` 1 ) = ( f ` 0 ) ) ) |
22 |
21
|
simp1d |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn K ) ) |
23 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
24 |
23
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
25 |
3
|
dfii3 |
|- II = ( J |`t ( 0 [,] 1 ) ) |
26 |
3
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
27 |
26
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> J e. ( TopOn ` CC ) ) |
28 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
29 |
28
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( 0 [,] 1 ) C_ CC ) |
30 |
27 27
|
cnmpt2nd |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. CC , t e. CC |-> t ) e. ( ( J tX J ) Cn J ) ) |
31 |
25 27 29 25 27 29 30
|
cnmpt2res |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> t ) e. ( ( II tX II ) Cn J ) ) |
32 |
1
|
adantr |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> S C_ CC ) |
33 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ S C_ CC ) -> ( J |`t S ) e. ( TopOn ` S ) ) |
34 |
26 1 33
|
sylancr |
|- ( ph -> ( J |`t S ) e. ( TopOn ` S ) ) |
35 |
4 34
|
eqeltrid |
|- ( ph -> K e. ( TopOn ` S ) ) |
36 |
|
toponuni |
|- ( K e. ( TopOn ` S ) -> S = U. K ) |
37 |
35 36
|
syl |
|- ( ph -> S = U. K ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> S = U. K ) |
39 |
18 38
|
eleqtrrd |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) e. S ) |
40 |
32 39
|
sseldd |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ` 0 ) e. CC ) |
41 |
24 24 27 40
|
cnmpt2c |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( f ` 0 ) ) e. ( ( II tX II ) Cn J ) ) |
42 |
3
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) |
43 |
42
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) ) |
44 |
|
oveq12 |
|- ( ( u = t /\ v = ( f ` 0 ) ) -> ( u x. v ) = ( t x. ( f ` 0 ) ) ) |
45 |
24 24 31 41 27 27 43 44
|
cnmpt22 |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( t x. ( f ` 0 ) ) ) e. ( ( II tX II ) Cn J ) ) |
46 |
|
ax-1cn |
|- 1 e. CC |
47 |
46
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> 1 e. CC ) |
48 |
24 24 27 47
|
cnmpt2c |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> 1 ) e. ( ( II tX II ) Cn J ) ) |
49 |
3
|
subcn |
|- - e. ( ( J tX J ) Cn J ) |
50 |
49
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> - e. ( ( J tX J ) Cn J ) ) |
51 |
24 24 48 31 50
|
cnmpt22f |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( 1 - t ) ) e. ( ( II tX II ) Cn J ) ) |
52 |
24 24
|
cnmpt1st |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> z ) e. ( ( II tX II ) Cn II ) ) |
53 |
3
|
cnfldtop |
|- J e. Top |
54 |
|
cnrest2r |
|- ( J e. Top -> ( II Cn ( J |`t S ) ) C_ ( II Cn J ) ) |
55 |
53 54
|
ax-mp |
|- ( II Cn ( J |`t S ) ) C_ ( II Cn J ) |
56 |
4
|
oveq2i |
|- ( II Cn K ) = ( II Cn ( J |`t S ) ) |
57 |
6 56
|
eleqtrdi |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f e. ( II Cn ( J |`t S ) ) ) |
58 |
55 57
|
sselid |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f e. ( II Cn J ) ) |
59 |
24 24 52 58
|
cnmpt21f |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( f ` z ) ) e. ( ( II tX II ) Cn J ) ) |
60 |
|
oveq12 |
|- ( ( u = ( 1 - t ) /\ v = ( f ` z ) ) -> ( u x. v ) = ( ( 1 - t ) x. ( f ` z ) ) ) |
61 |
24 24 51 59 27 27 43 60
|
cnmpt22 |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( 1 - t ) x. ( f ` z ) ) ) e. ( ( II tX II ) Cn J ) ) |
62 |
3
|
addcn |
|- + e. ( ( J tX J ) Cn J ) |
63 |
62
|
a1i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> + e. ( ( J tX J ) Cn J ) ) |
64 |
24 24 45 61 63
|
cnmpt22f |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn J ) ) |
65 |
|
oveq2 |
|- ( x = ( f ` 0 ) -> ( t x. x ) = ( t x. ( f ` 0 ) ) ) |
66 |
65
|
oveq1d |
|- ( x = ( f ` 0 ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) = ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. y ) ) ) |
67 |
66
|
eleq1d |
|- ( x = ( f ` 0 ) -> ( ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S <-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. y ) ) e. S ) ) |
68 |
|
oveq2 |
|- ( y = ( f ` z ) -> ( ( 1 - t ) x. y ) = ( ( 1 - t ) x. ( f ` z ) ) ) |
69 |
68
|
oveq2d |
|- ( y = ( f ` z ) -> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. y ) ) = ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) |
70 |
69
|
eleq1d |
|- ( y = ( f ` z ) -> ( ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. y ) ) e. S <-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) e. S ) ) |
71 |
2
|
3exp2 |
|- ( ph -> ( x e. S -> ( y e. S -> ( t e. ( 0 [,] 1 ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) ) ) ) |
72 |
71
|
imp42 |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
73 |
72
|
an32s |
|- ( ( ( ph /\ t e. ( 0 [,] 1 ) ) /\ ( x e. S /\ y e. S ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
74 |
73
|
ralrimivva |
|- ( ( ph /\ t e. ( 0 [,] 1 ) ) -> A. x e. S A. y e. S ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
75 |
74
|
ad2ant2rl |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> A. x e. S A. y e. S ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
76 |
39
|
adantr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> ( f ` 0 ) e. S ) |
77 |
15
|
adantr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> f : ( 0 [,] 1 ) --> U. K ) |
78 |
|
simprl |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> z e. ( 0 [,] 1 ) ) |
79 |
77 78
|
ffvelcdmd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> ( f ` z ) e. U. K ) |
80 |
38
|
adantr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> S = U. K ) |
81 |
79 80
|
eleqtrrd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> ( f ` z ) e. S ) |
82 |
67 70 75 76 81
|
rspc2dv |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ ( z e. ( 0 [,] 1 ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) e. S ) |
83 |
82
|
ralrimivva |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> A. z e. ( 0 [,] 1 ) A. t e. ( 0 [,] 1 ) ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) e. S ) |
84 |
|
eqid |
|- ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) = ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) |
85 |
84
|
fmpo |
|- ( A. z e. ( 0 [,] 1 ) A. t e. ( 0 [,] 1 ) ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) e. S <-> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> S ) |
86 |
83 85
|
sylib |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> S ) |
87 |
86
|
frnd |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ran ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) C_ S ) |
88 |
|
cnrest2 |
|- ( ( J e. ( TopOn ` CC ) /\ ran ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) C_ S /\ S C_ CC ) -> ( ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn J ) <-> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn ( J |`t S ) ) ) ) |
89 |
26 87 32 88
|
mp3an2i |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn J ) <-> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn ( J |`t S ) ) ) ) |
90 |
64 89
|
mpbid |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn ( J |`t S ) ) ) |
91 |
4
|
oveq2i |
|- ( ( II tX II ) Cn K ) = ( ( II tX II ) Cn ( J |`t S ) ) |
92 |
90 91
|
eleqtrrdi |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( ( II tX II ) Cn K ) ) |
93 |
|
simpr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) |
94 |
|
simpr |
|- ( ( z = s /\ t = 0 ) -> t = 0 ) |
95 |
94
|
oveq1d |
|- ( ( z = s /\ t = 0 ) -> ( t x. ( f ` 0 ) ) = ( 0 x. ( f ` 0 ) ) ) |
96 |
94
|
oveq2d |
|- ( ( z = s /\ t = 0 ) -> ( 1 - t ) = ( 1 - 0 ) ) |
97 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
98 |
96 97
|
eqtrdi |
|- ( ( z = s /\ t = 0 ) -> ( 1 - t ) = 1 ) |
99 |
|
simpl |
|- ( ( z = s /\ t = 0 ) -> z = s ) |
100 |
99
|
fveq2d |
|- ( ( z = s /\ t = 0 ) -> ( f ` z ) = ( f ` s ) ) |
101 |
98 100
|
oveq12d |
|- ( ( z = s /\ t = 0 ) -> ( ( 1 - t ) x. ( f ` z ) ) = ( 1 x. ( f ` s ) ) ) |
102 |
95 101
|
oveq12d |
|- ( ( z = s /\ t = 0 ) -> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) = ( ( 0 x. ( f ` 0 ) ) + ( 1 x. ( f ` s ) ) ) ) |
103 |
|
ovex |
|- ( ( 0 x. ( f ` 0 ) ) + ( 1 x. ( f ` s ) ) ) e. _V |
104 |
102 84 103
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) 0 ) = ( ( 0 x. ( f ` 0 ) ) + ( 1 x. ( f ` s ) ) ) ) |
105 |
93 16 104
|
sylancl |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( s ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) 0 ) = ( ( 0 x. ( f ` 0 ) ) + ( 1 x. ( f ` s ) ) ) ) |
106 |
40
|
adantr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( f ` 0 ) e. CC ) |
107 |
106
|
mul02d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 x. ( f ` 0 ) ) = 0 ) |
108 |
26
|
toponunii |
|- CC = U. J |
109 |
12 108
|
cnf |
|- ( f e. ( II Cn J ) -> f : ( 0 [,] 1 ) --> CC ) |
110 |
58 109
|
syl |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f : ( 0 [,] 1 ) --> CC ) |
111 |
110
|
ffvelcdmda |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( f ` s ) e. CC ) |
112 |
111
|
mullidd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 x. ( f ` s ) ) = ( f ` s ) ) |
113 |
107 112
|
oveq12d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( f ` 0 ) ) + ( 1 x. ( f ` s ) ) ) = ( 0 + ( f ` s ) ) ) |
114 |
111
|
addlidd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 + ( f ` s ) ) = ( f ` s ) ) |
115 |
105 113 114
|
3eqtrd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( s ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) 0 ) = ( f ` s ) ) |
116 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
117 |
|
simpr |
|- ( ( z = s /\ t = 1 ) -> t = 1 ) |
118 |
117
|
oveq1d |
|- ( ( z = s /\ t = 1 ) -> ( t x. ( f ` 0 ) ) = ( 1 x. ( f ` 0 ) ) ) |
119 |
117
|
oveq2d |
|- ( ( z = s /\ t = 1 ) -> ( 1 - t ) = ( 1 - 1 ) ) |
120 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
121 |
119 120
|
eqtrdi |
|- ( ( z = s /\ t = 1 ) -> ( 1 - t ) = 0 ) |
122 |
|
simpl |
|- ( ( z = s /\ t = 1 ) -> z = s ) |
123 |
122
|
fveq2d |
|- ( ( z = s /\ t = 1 ) -> ( f ` z ) = ( f ` s ) ) |
124 |
121 123
|
oveq12d |
|- ( ( z = s /\ t = 1 ) -> ( ( 1 - t ) x. ( f ` z ) ) = ( 0 x. ( f ` s ) ) ) |
125 |
118 124
|
oveq12d |
|- ( ( z = s /\ t = 1 ) -> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) = ( ( 1 x. ( f ` 0 ) ) + ( 0 x. ( f ` s ) ) ) ) |
126 |
|
ovex |
|- ( ( 1 x. ( f ` 0 ) ) + ( 0 x. ( f ` s ) ) ) e. _V |
127 |
125 84 126
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) 1 ) = ( ( 1 x. ( f ` 0 ) ) + ( 0 x. ( f ` s ) ) ) ) |
128 |
93 116 127
|
sylancl |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( s ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) 1 ) = ( ( 1 x. ( f ` 0 ) ) + ( 0 x. ( f ` s ) ) ) ) |
129 |
106
|
mullidd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 x. ( f ` 0 ) ) = ( f ` 0 ) ) |
130 |
111
|
mul02d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 x. ( f ` s ) ) = 0 ) |
131 |
129 130
|
oveq12d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 x. ( f ` 0 ) ) + ( 0 x. ( f ` s ) ) ) = ( ( f ` 0 ) + 0 ) ) |
132 |
106
|
addridd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( f ` 0 ) + 0 ) = ( f ` 0 ) ) |
133 |
|
fvex |
|- ( f ` 0 ) e. _V |
134 |
133
|
fvconst2 |
|- ( s e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` s ) = ( f ` 0 ) ) |
135 |
134
|
adantl |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` s ) = ( f ` 0 ) ) |
136 |
132 135
|
eqtr4d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( f ` 0 ) + 0 ) = ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` s ) ) |
137 |
128 131 136
|
3eqtrd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( s ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) 1 ) = ( ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ` s ) ) |
138 |
|
simpr |
|- ( ( z = 0 /\ t = s ) -> t = s ) |
139 |
138
|
oveq1d |
|- ( ( z = 0 /\ t = s ) -> ( t x. ( f ` 0 ) ) = ( s x. ( f ` 0 ) ) ) |
140 |
138
|
oveq2d |
|- ( ( z = 0 /\ t = s ) -> ( 1 - t ) = ( 1 - s ) ) |
141 |
|
simpl |
|- ( ( z = 0 /\ t = s ) -> z = 0 ) |
142 |
141
|
fveq2d |
|- ( ( z = 0 /\ t = s ) -> ( f ` z ) = ( f ` 0 ) ) |
143 |
140 142
|
oveq12d |
|- ( ( z = 0 /\ t = s ) -> ( ( 1 - t ) x. ( f ` z ) ) = ( ( 1 - s ) x. ( f ` 0 ) ) ) |
144 |
139 143
|
oveq12d |
|- ( ( z = 0 /\ t = s ) -> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) ) |
145 |
|
ovex |
|- ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) e. _V |
146 |
144 84 145
|
ovmpoa |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) s ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) ) |
147 |
16 93 146
|
sylancr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) s ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) ) |
148 |
28 93
|
sselid |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> s e. CC ) |
149 |
|
pncan3 |
|- ( ( s e. CC /\ 1 e. CC ) -> ( s + ( 1 - s ) ) = 1 ) |
150 |
148 46 149
|
sylancl |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( s + ( 1 - s ) ) = 1 ) |
151 |
150
|
oveq1d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( s + ( 1 - s ) ) x. ( f ` 0 ) ) = ( 1 x. ( f ` 0 ) ) ) |
152 |
|
subcl |
|- ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) |
153 |
46 148 152
|
sylancr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 - s ) e. CC ) |
154 |
148 153 106
|
adddird |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( s + ( 1 - s ) ) x. ( f ` 0 ) ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) ) |
155 |
151 154 129
|
3eqtr3d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) = ( f ` 0 ) ) |
156 |
147 155
|
eqtrd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) s ) = ( f ` 0 ) ) |
157 |
|
simpr |
|- ( ( z = 1 /\ t = s ) -> t = s ) |
158 |
157
|
oveq1d |
|- ( ( z = 1 /\ t = s ) -> ( t x. ( f ` 0 ) ) = ( s x. ( f ` 0 ) ) ) |
159 |
157
|
oveq2d |
|- ( ( z = 1 /\ t = s ) -> ( 1 - t ) = ( 1 - s ) ) |
160 |
|
simpl |
|- ( ( z = 1 /\ t = s ) -> z = 1 ) |
161 |
160
|
fveq2d |
|- ( ( z = 1 /\ t = s ) -> ( f ` z ) = ( f ` 1 ) ) |
162 |
159 161
|
oveq12d |
|- ( ( z = 1 /\ t = s ) -> ( ( 1 - t ) x. ( f ` z ) ) = ( ( 1 - s ) x. ( f ` 1 ) ) ) |
163 |
158 162
|
oveq12d |
|- ( ( z = 1 /\ t = s ) -> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 1 ) ) ) ) |
164 |
|
ovex |
|- ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 1 ) ) ) e. _V |
165 |
163 84 164
|
ovmpoa |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) s ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 1 ) ) ) ) |
166 |
116 93 165
|
sylancr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) s ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 1 ) ) ) ) |
167 |
|
simplrr |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( f ` 0 ) = ( f ` 1 ) ) |
168 |
167
|
oveq2d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( f ` 0 ) ) = ( ( 1 - s ) x. ( f ` 1 ) ) ) |
169 |
168
|
oveq2d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 0 ) ) ) = ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 1 ) ) ) ) |
170 |
155 169 167
|
3eqtr3d |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( s x. ( f ` 0 ) ) + ( ( 1 - s ) x. ( f ` 1 ) ) ) = ( f ` 1 ) ) |
171 |
166 170
|
eqtrd |
|- ( ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) s ) = ( f ` 1 ) ) |
172 |
6 22 92 115 137 156 171
|
isphtpy2d |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( z e. ( 0 [,] 1 ) , t e. ( 0 [,] 1 ) |-> ( ( t x. ( f ` 0 ) ) + ( ( 1 - t ) x. ( f ` z ) ) ) ) e. ( f ( PHtpy ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) |
173 |
172
|
ne0d |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> ( f ( PHtpy ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) =/= (/) ) |
174 |
|
isphtpc |
|- ( f ( ~=ph ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) <-> ( f e. ( II Cn K ) /\ ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) e. ( II Cn K ) /\ ( f ( PHtpy ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) =/= (/) ) ) |
175 |
6 22 173 174
|
syl3anbrc |
|- ( ( ph /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = ( f ` 1 ) ) ) -> f ( ~=ph ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) |
176 |
175
|
expr |
|- ( ( ph /\ f e. ( II Cn K ) ) -> ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) |
177 |
176
|
ralrimiva |
|- ( ph -> A. f e. ( II Cn K ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) |
178 |
|
issconn |
|- ( K e. SConn <-> ( K e. PConn /\ A. f e. ( II Cn K ) ( ( f ` 0 ) = ( f ` 1 ) -> f ( ~=ph ` K ) ( ( 0 [,] 1 ) X. { ( f ` 0 ) } ) ) ) ) |
179 |
5 177 178
|
sylanbrc |
|- ( ph -> K e. SConn ) |