| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blsconn.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | blsconn.s |  |-  S = ( P ( ball ` ( abs o. - ) ) R ) | 
						
							| 3 |  | blsconn.k |  |-  K = ( J |`t S ) | 
						
							| 4 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 5 |  | blssm |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( P ( ball ` ( abs o. - ) ) R ) C_ CC ) | 
						
							| 6 | 4 5 | mp3an1 |  |-  ( ( P e. CC /\ R e. RR* ) -> ( P ( ball ` ( abs o. - ) ) R ) C_ CC ) | 
						
							| 7 | 2 6 | eqsstrid |  |-  ( ( P e. CC /\ R e. RR* ) -> S C_ CC ) | 
						
							| 8 | 2 | blcvx |  |-  ( ( ( P e. CC /\ R e. RR* ) /\ ( x e. S /\ y e. S /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) | 
						
							| 9 | 7 8 1 3 | cvxsconn |  |-  ( ( P e. CC /\ R e. RR* ) -> K e. SConn ) |