Step |
Hyp |
Ref |
Expression |
1 |
|
blsconn.j |
|- J = ( TopOpen ` CCfld ) |
2 |
|
blsconn.s |
|- S = ( P ( ball ` ( abs o. - ) ) R ) |
3 |
|
blsconn.k |
|- K = ( J |`t S ) |
4 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
5 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ R e. RR* ) -> ( P ( ball ` ( abs o. - ) ) R ) C_ CC ) |
6 |
4 5
|
mp3an1 |
|- ( ( P e. CC /\ R e. RR* ) -> ( P ( ball ` ( abs o. - ) ) R ) C_ CC ) |
7 |
2 6
|
eqsstrid |
|- ( ( P e. CC /\ R e. RR* ) -> S C_ CC ) |
8 |
2
|
blcvx |
|- ( ( ( P e. CC /\ R e. RR* ) /\ ( x e. S /\ y e. S /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
9 |
7 8 1 3
|
cvxsconn |
|- ( ( P e. CC /\ R e. RR* ) -> K e. SConn ) |