Metamath Proof Explorer


Theorem blsconn

Description: An open ball in the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses blsconn.j J = TopOpen fld
blsconn.s S = P ball abs R
blsconn.k K = J 𝑡 S
Assertion blsconn P R * K SConn

Proof

Step Hyp Ref Expression
1 blsconn.j J = TopOpen fld
2 blsconn.s S = P ball abs R
3 blsconn.k K = J 𝑡 S
4 cnxmet abs ∞Met
5 blssm abs ∞Met P R * P ball abs R
6 4 5 mp3an1 P R * P ball abs R
7 2 6 eqsstrid P R * S
8 2 blcvx P R * x S y S t 0 1 t x + 1 t y S
9 7 8 1 3 cvxsconn P R * K SConn