Metamath Proof Explorer


Theorem mpomulcn

Description: Complex number multiplication is a continuous function. Version of mulcn using maps-to notation, which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)

Ref Expression
Hypothesis mpomulcn.j J=TopOpenfld
Assertion mpomulcn x,yxyJ×tJCnJ

Proof

Step Hyp Ref Expression
1 mpomulcn.j J=TopOpenfld
2 mpomulf x,yxy:×
3 mulcn2 a+bcz+w+dedb<zec<wdebc<a
4 simplr vua+bcu
5 simplll vua+bcd=uv
6 simplr vua+bcd=ue=vd=u
7 6 fvoveq1d vua+bcd=ue=vdb=ub
8 7 breq1d vua+bcd=ue=vdb<zub<z
9 simpr vua+bcd=ue=ve=v
10 9 fvoveq1d vua+bcd=ue=vec=vc
11 10 breq1d vua+bcd=ue=vec<wvc<w
12 8 11 anbi12d vua+bcd=ue=vdb<zec<wub<zvc<w
13 simplr vud=ue=vd=u
14 13 eqcomd vud=ue=vu=d
15 simpr vud=ue=ve=v
16 15 eqcomd vud=ue=vv=e
17 14 16 oveq12d vud=ue=vuv=de
18 oveq1 x=uxy=uy
19 oveq2 y=vuy=uv
20 18 19 cbvmpov x,yxy=u,vuv
21 20 a1i x,yxy=u,vuv
22 eqidd uv=uv
23 simp2 uvu
24 simp3 uvv
25 23 24 mulcld uvuv
26 21 22 25 fvmpopr2d uvx,yxyuv=uv
27 26 eqcomd uvuv=x,yxyuv
28 27 3expib uvuv=x,yxyuv
29 28 mptru uvuv=x,yxyuv
30 df-ov ux,yxyv=x,yxyuv
31 29 30 eqtr4di uvuv=ux,yxyv
32 31 ancoms vuuv=ux,yxyv
33 32 adantr vud=uuv=ux,yxyv
34 33 adantr vud=ue=vuv=ux,yxyv
35 17 34 eqtr3d vud=ue=vde=ux,yxyv
36 35 adantllr vua+bcd=ue=vde=ux,yxyv
37 df-ov bx,yxyc=x,yxybc
38 oveq1 x=bxy=by
39 oveq2 y=cby=bc
40 38 39 cbvmpov x,yxy=b,cbc
41 40 a1i a+x,yxy=b,cbc
42 eqidd a+bc=bc
43 simp2 a+bcb
44 simp3 a+bcc
45 43 44 mulcld a+bcbc
46 41 42 45 fvmpopr2d a+bcx,yxybc=bc
47 37 46 eqtr2id a+bcbc=bx,yxyc
48 47 ad3antlr vua+bcd=ue=vbc=bx,yxyc
49 36 48 oveq12d vua+bcd=ue=vdebc=ux,yxyvbx,yxyc
50 49 fveq2d vua+bcd=ue=vdebc=ux,yxyvbx,yxyc
51 50 breq1d vua+bcd=ue=vdebc<aux,yxyvbx,yxyc<a
52 12 51 imbi12d vua+bcd=ue=vdb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
53 5 52 rspcdv vua+bcd=uedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
54 4 53 rspcimdv vua+bcdedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
55 54 expimpd vua+bcdedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
56 55 ex vua+bcdedb<zec<wdebc<aub<zvc<wux,yxyvbx,yxyc<a
57 56 com13 a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
58 57 ralrimdv a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
59 58 ex a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
60 59 ralrimdv a+bcdedb<zec<wdebc<auvub<zvc<wux,yxyvbx,yxyc<a
61 60 reximdv a+bcw+dedb<zec<wdebc<aw+uvub<zvc<wux,yxyvbx,yxyc<a
62 61 reximdv a+bcz+w+dedb<zec<wdebc<az+w+uvub<zvc<wux,yxyvbx,yxyc<a
63 3 62 mpd a+bcz+w+uvub<zvc<wux,yxyvbx,yxyc<a
64 1 2 63 addcnlem x,yxyJ×tJCnJ