Description: Complex number multiplication is a continuous function. Version of mulcn using maps-to notation, which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mpomulcn.j | |
|
Assertion | mpomulcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpomulcn.j | |
|
2 | mpomulf | |
|
3 | mulcn2 | |
|
4 | simplr | |
|
5 | simplll | |
|
6 | simplr | |
|
7 | 6 | fvoveq1d | |
8 | 7 | breq1d | |
9 | simpr | |
|
10 | 9 | fvoveq1d | |
11 | 10 | breq1d | |
12 | 8 11 | anbi12d | |
13 | simplr | |
|
14 | 13 | eqcomd | |
15 | simpr | |
|
16 | 15 | eqcomd | |
17 | 14 16 | oveq12d | |
18 | oveq1 | |
|
19 | oveq2 | |
|
20 | 18 19 | cbvmpov | |
21 | 20 | a1i | |
22 | eqidd | |
|
23 | simp2 | |
|
24 | simp3 | |
|
25 | 23 24 | mulcld | |
26 | 21 22 25 | fvmpopr2d | |
27 | 26 | eqcomd | |
28 | 27 | 3expib | |
29 | 28 | mptru | |
30 | df-ov | |
|
31 | 29 30 | eqtr4di | |
32 | 31 | ancoms | |
33 | 32 | adantr | |
34 | 33 | adantr | |
35 | 17 34 | eqtr3d | |
36 | 35 | adantllr | |
37 | df-ov | |
|
38 | oveq1 | |
|
39 | oveq2 | |
|
40 | 38 39 | cbvmpov | |
41 | 40 | a1i | |
42 | eqidd | |
|
43 | simp2 | |
|
44 | simp3 | |
|
45 | 43 44 | mulcld | |
46 | 41 42 45 | fvmpopr2d | |
47 | 37 46 | eqtr2id | |
48 | 47 | ad3antlr | |
49 | 36 48 | oveq12d | |
50 | 49 | fveq2d | |
51 | 50 | breq1d | |
52 | 12 51 | imbi12d | |
53 | 5 52 | rspcdv | |
54 | 4 53 | rspcimdv | |
55 | 54 | expimpd | |
56 | 55 | ex | |
57 | 56 | com13 | |
58 | 57 | ralrimdv | |
59 | 58 | ex | |
60 | 59 | ralrimdv | |
61 | 60 | reximdv | |
62 | 61 | reximdv | |
63 | 3 62 | mpd | |
64 | 1 2 63 | addcnlem | |