Metamath Proof Explorer


Theorem fvmpopr2d

Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses fvmpopr2d.1 φF=aA,bBC
fvmpopr2d.2 φP=ab
fvmpopr2d.3 φaAbBCV
Assertion fvmpopr2d φaAbBFP=C

Proof

Step Hyp Ref Expression
1 fvmpopr2d.1 φF=aA,bBC
2 fvmpopr2d.2 φP=ab
3 fvmpopr2d.3 φaAbBCV
4 df-ov aaA,bBCb=aA,bBCab
5 1 3ad2ant1 φaAbBF=aA,bBC
6 2 3ad2ant1 φaAbBP=ab
7 5 6 fveq12d φaAbBFP=aA,bBCab
8 4 7 eqtr4id φaAbBaaA,bBCb=FP
9 nfcv _cC
10 nfcv _dC
11 nfcv _ad
12 nfcsb1v _ac/aC
13 11 12 nfcsbw _ad/bc/aC
14 nfcsb1v _bd/bc/aC
15 csbeq1a a=cC=c/aC
16 csbeq1a b=dc/aC=d/bc/aC
17 15 16 sylan9eq a=cb=dC=d/bc/aC
18 9 10 13 14 17 cbvmpo aA,bBC=cA,dBd/bc/aC
19 18 oveqi aaA,bBCb=acA,dBd/bc/aCb
20 eqidd φaAbBcA,dBd/bc/aC=cA,dBd/bc/aC
21 equcom a=cc=a
22 equcom b=dd=b
23 21 22 anbi12i a=cb=dc=ad=b
24 23 17 sylbir c=ad=bC=d/bc/aC
25 24 eqcomd c=ad=bd/bc/aC=C
26 25 adantl φaAbBc=ad=bd/bc/aC=C
27 simp2 φaAbBaA
28 simp3 φaAbBbB
29 20 26 27 28 3 ovmpod φaAbBacA,dBd/bc/aCb=C
30 19 29 eqtrid φaAbBaaA,bBCb=C
31 8 30 eqtr3d φaAbBFP=C