Metamath Proof Explorer


Theorem fvmpopr2d

Description: Value of an operation given by maps-to notation. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses fvmpopr2d.1 ( 𝜑𝐹 = ( 𝑎𝐴 , 𝑏𝐵𝐶 ) )
fvmpopr2d.2 ( 𝜑𝑃 = ⟨ 𝑎 , 𝑏 ⟩ )
fvmpopr2d.3 ( ( 𝜑𝑎𝐴𝑏𝐵 ) → 𝐶𝑉 )
Assertion fvmpopr2d ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝐹𝑃 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 fvmpopr2d.1 ( 𝜑𝐹 = ( 𝑎𝐴 , 𝑏𝐵𝐶 ) )
2 fvmpopr2d.2 ( 𝜑𝑃 = ⟨ 𝑎 , 𝑏 ⟩ )
3 fvmpopr2d.3 ( ( 𝜑𝑎𝐴𝑏𝐵 ) → 𝐶𝑉 )
4 1 3ad2ant1 ( ( 𝜑𝑎𝐴𝑏𝐵 ) → 𝐹 = ( 𝑎𝐴 , 𝑏𝐵𝐶 ) )
5 2 3ad2ant1 ( ( 𝜑𝑎𝐴𝑏𝐵 ) → 𝑃 = ⟨ 𝑎 , 𝑏 ⟩ )
6 4 5 fveq12d ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝐹𝑃 ) = ( ( 𝑎𝐴 , 𝑏𝐵𝐶 ) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) )
7 df-ov ( 𝑎 ( 𝑎𝐴 , 𝑏𝐵𝐶 ) 𝑏 ) = ( ( 𝑎𝐴 , 𝑏𝐵𝐶 ) ‘ ⟨ 𝑎 , 𝑏 ⟩ )
8 6 7 syl6reqr ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝑎 ( 𝑎𝐴 , 𝑏𝐵𝐶 ) 𝑏 ) = ( 𝐹𝑃 ) )
9 nfcv 𝑐 𝐶
10 nfcv 𝑑 𝐶
11 nfcv 𝑎 𝑑
12 nfcsb1v 𝑎 𝑐 / 𝑎 𝐶
13 11 12 nfcsbw 𝑎 𝑑 / 𝑏 𝑐 / 𝑎 𝐶
14 nfcsb1v 𝑏 𝑑 / 𝑏 𝑐 / 𝑎 𝐶
15 csbeq1a ( 𝑎 = 𝑐𝐶 = 𝑐 / 𝑎 𝐶 )
16 csbeq1a ( 𝑏 = 𝑑 𝑐 / 𝑎 𝐶 = 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 )
17 15 16 sylan9eq ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → 𝐶 = 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 )
18 9 10 13 14 17 cbvmpo ( 𝑎𝐴 , 𝑏𝐵𝐶 ) = ( 𝑐𝐴 , 𝑑𝐵 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 )
19 18 oveqi ( 𝑎 ( 𝑎𝐴 , 𝑏𝐵𝐶 ) 𝑏 ) = ( 𝑎 ( 𝑐𝐴 , 𝑑𝐵 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 ) 𝑏 )
20 eqidd ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝑐𝐴 , 𝑑𝐵 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 ) = ( 𝑐𝐴 , 𝑑𝐵 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 ) )
21 equcom ( 𝑎 = 𝑐𝑐 = 𝑎 )
22 equcom ( 𝑏 = 𝑑𝑑 = 𝑏 )
23 21 22 anbi12i ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) ↔ ( 𝑐 = 𝑎𝑑 = 𝑏 ) )
24 23 17 sylbir ( ( 𝑐 = 𝑎𝑑 = 𝑏 ) → 𝐶 = 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 )
25 24 eqcomd ( ( 𝑐 = 𝑎𝑑 = 𝑏 ) → 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 = 𝐶 )
26 25 adantl ( ( ( 𝜑𝑎𝐴𝑏𝐵 ) ∧ ( 𝑐 = 𝑎𝑑 = 𝑏 ) ) → 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 = 𝐶 )
27 simp2 ( ( 𝜑𝑎𝐴𝑏𝐵 ) → 𝑎𝐴 )
28 simp3 ( ( 𝜑𝑎𝐴𝑏𝐵 ) → 𝑏𝐵 )
29 20 26 27 28 3 ovmpod ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝑎 ( 𝑐𝐴 , 𝑑𝐵 𝑑 / 𝑏 𝑐 / 𝑎 𝐶 ) 𝑏 ) = 𝐶 )
30 19 29 syl5eq ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝑎 ( 𝑎𝐴 , 𝑏𝐵𝐶 ) 𝑏 ) = 𝐶 )
31 8 30 eqtr3d ( ( 𝜑𝑎𝐴𝑏𝐵 ) → ( 𝐹𝑃 ) = 𝐶 )