Step |
Hyp |
Ref |
Expression |
1 |
|
ov3.1 |
⊢ 𝑆 ∈ V |
2 |
|
ov3.2 |
⊢ ( ( ( 𝑤 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑓 = 𝐷 ) ) → 𝑅 = 𝑆 ) |
3 |
|
ov3.3 |
⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) } |
4 |
1
|
isseti |
⊢ ∃ 𝑧 𝑧 = 𝑆 |
5 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑧 〈 𝐴 , 𝐵 〉 |
7 |
|
nfoprab3 |
⊢ Ⅎ 𝑧 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) } |
8 |
3 7
|
nfcxfr |
⊢ Ⅎ 𝑧 𝐹 |
9 |
|
nfcv |
⊢ Ⅎ 𝑧 〈 𝐶 , 𝐷 〉 |
10 |
6 8 9
|
nfov |
⊢ Ⅎ 𝑧 ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) |
11 |
10
|
nfeq1 |
⊢ Ⅎ 𝑧 ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑆 |
12 |
2
|
eqeq2d |
⊢ ( ( ( 𝑤 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑢 = 𝐶 ∧ 𝑓 = 𝐷 ) ) → ( 𝑧 = 𝑅 ↔ 𝑧 = 𝑆 ) ) |
13 |
12
|
copsex4g |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ 𝑧 = 𝑆 ) ) |
14 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐻 × 𝐻 ) ) |
15 |
|
opelxpi |
⊢ ( ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) → 〈 𝐶 , 𝐷 〉 ∈ ( 𝐻 × 𝐻 ) ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 |
17 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 𝐴 , 𝐵 〉 |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 𝐶 , 𝐷 〉 |
19 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) |
20 |
|
nfoprab1 |
⊢ Ⅎ 𝑥 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) } |
21 |
3 20
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
22 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
23 |
16 21 22
|
nfov |
⊢ Ⅎ 𝑥 ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) |
24 |
23
|
nfeq1 |
⊢ Ⅎ 𝑥 ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = 𝑧 |
25 |
19 24
|
nfim |
⊢ Ⅎ 𝑥 ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = 𝑧 ) |
26 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) |
27 |
|
nfoprab2 |
⊢ Ⅎ 𝑦 { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) } |
28 |
3 27
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐹 |
29 |
17 28 18
|
nfov |
⊢ Ⅎ 𝑦 ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) |
30 |
29
|
nfeq1 |
⊢ Ⅎ 𝑦 ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 |
31 |
26 30
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ) |
32 |
|
eqeq1 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑥 = 〈 𝑤 , 𝑣 〉 ↔ 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ) ) |
33 |
32
|
anbi1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ↔ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ) ) |
34 |
33
|
anbi1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) ) |
35 |
34
|
4exbidv |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) ) |
36 |
|
oveq1 |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( 𝑥 𝐹 𝑦 ) = ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) ) |
37 |
36
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑥 𝐹 𝑦 ) = 𝑧 ↔ ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = 𝑧 ) ) |
38 |
35 37
|
imbi12d |
⊢ ( 𝑥 = 〈 𝐴 , 𝐵 〉 → ( ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 𝑥 𝐹 𝑦 ) = 𝑧 ) ↔ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = 𝑧 ) ) ) |
39 |
|
eqeq1 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 𝑦 = 〈 𝑢 , 𝑓 〉 ↔ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ↔ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ) ) |
41 |
40
|
anbi1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) ) |
42 |
41
|
4exbidv |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) ) |
44 |
43
|
eqeq1d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = 𝑧 ↔ ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ) ) |
45 |
42 44
|
imbi12d |
⊢ ( 𝑦 = 〈 𝐶 , 𝐷 〉 → ( ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 𝑦 ) = 𝑧 ) ↔ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ) ) ) |
46 |
|
moeq |
⊢ ∃* 𝑧 𝑧 = 𝑅 |
47 |
46
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) |
48 |
47
|
mosubop |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) |
49 |
|
anass |
⊢ ( ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
50 |
49
|
2exbii |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑢 ∃ 𝑓 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
51 |
|
19.42vv |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
52 |
50 51
|
bitri |
⊢ ( ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
53 |
52
|
2exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
54 |
53
|
mobii |
⊢ ( ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ↔ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ ∃ 𝑢 ∃ 𝑓 ( 𝑦 = 〈 𝑢 , 𝑓 〉 ∧ 𝑧 = 𝑅 ) ) ) |
55 |
48 54
|
mpbir |
⊢ ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) |
56 |
55
|
a1i |
⊢ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) → ∃* 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) ) |
57 |
56 3
|
ovidi |
⊢ ( ( 𝑥 ∈ ( 𝐻 × 𝐻 ) ∧ 𝑦 ∈ ( 𝐻 × 𝐻 ) ) → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 𝑥 = 〈 𝑤 , 𝑣 〉 ∧ 𝑦 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 𝑥 𝐹 𝑦 ) = 𝑧 ) ) |
58 |
16 17 18 25 31 38 45 57
|
vtocl2gaf |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐻 × 𝐻 ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( 𝐻 × 𝐻 ) ) → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ) ) |
59 |
14 15 58
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑓 ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑤 , 𝑣 〉 ∧ 〈 𝐶 , 𝐷 〉 = 〈 𝑢 , 𝑓 〉 ) ∧ 𝑧 = 𝑅 ) → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ) ) |
60 |
13 59
|
sylbird |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) → ( 𝑧 = 𝑆 → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ) ) |
61 |
|
eqeq2 |
⊢ ( 𝑧 = 𝑆 → ( ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑧 ↔ ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑆 ) ) |
62 |
60 61
|
mpbidi |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) → ( 𝑧 = 𝑆 → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑆 ) ) |
63 |
5 11 62
|
exlimd |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) → ( ∃ 𝑧 𝑧 = 𝑆 → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑆 ) ) |
64 |
4 63
|
mpi |
⊢ ( ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻 ) ) → ( 〈 𝐴 , 𝐵 〉 𝐹 〈 𝐶 , 𝐷 〉 ) = 𝑆 ) |