Step |
Hyp |
Ref |
Expression |
1 |
|
ov3.1 |
|- S e. _V |
2 |
|
ov3.2 |
|- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> R = S ) |
3 |
|
ov3.3 |
|- F = { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
4 |
1
|
isseti |
|- E. z z = S |
5 |
|
nfv |
|- F/ z ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) |
6 |
|
nfcv |
|- F/_ z <. A , B >. |
7 |
|
nfoprab3 |
|- F/_ z { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
8 |
3 7
|
nfcxfr |
|- F/_ z F |
9 |
|
nfcv |
|- F/_ z <. C , D >. |
10 |
6 8 9
|
nfov |
|- F/_ z ( <. A , B >. F <. C , D >. ) |
11 |
10
|
nfeq1 |
|- F/ z ( <. A , B >. F <. C , D >. ) = S |
12 |
2
|
eqeq2d |
|- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> ( z = R <-> z = S ) ) |
13 |
12
|
copsex4g |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) <-> z = S ) ) |
14 |
|
opelxpi |
|- ( ( A e. H /\ B e. H ) -> <. A , B >. e. ( H X. H ) ) |
15 |
|
opelxpi |
|- ( ( C e. H /\ D e. H ) -> <. C , D >. e. ( H X. H ) ) |
16 |
|
nfcv |
|- F/_ x <. A , B >. |
17 |
|
nfcv |
|- F/_ y <. A , B >. |
18 |
|
nfcv |
|- F/_ y <. C , D >. |
19 |
|
nfv |
|- F/ x E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
20 |
|
nfoprab1 |
|- F/_ x { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
21 |
3 20
|
nfcxfr |
|- F/_ x F |
22 |
|
nfcv |
|- F/_ x y |
23 |
16 21 22
|
nfov |
|- F/_ x ( <. A , B >. F y ) |
24 |
23
|
nfeq1 |
|- F/ x ( <. A , B >. F y ) = z |
25 |
19 24
|
nfim |
|- F/ x ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) |
26 |
|
nfv |
|- F/ y E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) |
27 |
|
nfoprab2 |
|- F/_ y { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
28 |
3 27
|
nfcxfr |
|- F/_ y F |
29 |
17 28 18
|
nfov |
|- F/_ y ( <. A , B >. F <. C , D >. ) |
30 |
29
|
nfeq1 |
|- F/ y ( <. A , B >. F <. C , D >. ) = z |
31 |
26 30
|
nfim |
|- F/ y ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) |
32 |
|
eqeq1 |
|- ( x = <. A , B >. -> ( x = <. w , v >. <-> <. A , B >. = <. w , v >. ) ) |
33 |
32
|
anbi1d |
|- ( x = <. A , B >. -> ( ( x = <. w , v >. /\ y = <. u , f >. ) <-> ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) ) ) |
34 |
33
|
anbi1d |
|- ( x = <. A , B >. -> ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) ) |
35 |
34
|
4exbidv |
|- ( x = <. A , B >. -> ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) ) |
36 |
|
oveq1 |
|- ( x = <. A , B >. -> ( x F y ) = ( <. A , B >. F y ) ) |
37 |
36
|
eqeq1d |
|- ( x = <. A , B >. -> ( ( x F y ) = z <-> ( <. A , B >. F y ) = z ) ) |
38 |
35 37
|
imbi12d |
|- ( x = <. A , B >. -> ( ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( x F y ) = z ) <-> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) ) ) |
39 |
|
eqeq1 |
|- ( y = <. C , D >. -> ( y = <. u , f >. <-> <. C , D >. = <. u , f >. ) ) |
40 |
39
|
anbi2d |
|- ( y = <. C , D >. -> ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) <-> ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) ) ) |
41 |
40
|
anbi1d |
|- ( y = <. C , D >. -> ( ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) ) ) |
42 |
41
|
4exbidv |
|- ( y = <. C , D >. -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) ) ) |
43 |
|
oveq2 |
|- ( y = <. C , D >. -> ( <. A , B >. F y ) = ( <. A , B >. F <. C , D >. ) ) |
44 |
43
|
eqeq1d |
|- ( y = <. C , D >. -> ( ( <. A , B >. F y ) = z <-> ( <. A , B >. F <. C , D >. ) = z ) ) |
45 |
42 44
|
imbi12d |
|- ( y = <. C , D >. -> ( ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) <-> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) ) |
46 |
|
moeq |
|- E* z z = R |
47 |
46
|
mosubop |
|- E* z E. u E. f ( y = <. u , f >. /\ z = R ) |
48 |
47
|
mosubop |
|- E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) |
49 |
|
anass |
|- ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
50 |
49
|
2exbii |
|- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
51 |
|
19.42vv |
|- ( E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
52 |
50 51
|
bitri |
|- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
53 |
52
|
2exbii |
|- ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
54 |
53
|
mobii |
|- ( E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
55 |
48 54
|
mpbir |
|- E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
56 |
55
|
a1i |
|- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) |
57 |
56 3
|
ovidi |
|- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( x F y ) = z ) ) |
58 |
16 17 18 25 31 38 45 57
|
vtocl2gaf |
|- ( ( <. A , B >. e. ( H X. H ) /\ <. C , D >. e. ( H X. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) |
59 |
14 15 58
|
syl2an |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) |
60 |
13 59
|
sylbird |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( z = S -> ( <. A , B >. F <. C , D >. ) = z ) ) |
61 |
|
eqeq2 |
|- ( z = S -> ( ( <. A , B >. F <. C , D >. ) = z <-> ( <. A , B >. F <. C , D >. ) = S ) ) |
62 |
60 61
|
mpbidi |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( z = S -> ( <. A , B >. F <. C , D >. ) = S ) ) |
63 |
5 11 62
|
exlimd |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. z z = S -> ( <. A , B >. F <. C , D >. ) = S ) ) |
64 |
4 63
|
mpi |
|- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( <. A , B >. F <. C , D >. ) = S ) |