Metamath Proof Explorer


Theorem ov3

Description: The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ov3.1 S V
ov3.2 w = A v = B u = C f = D R = S
ov3.3 F = x y z | x H × H y H × H w v u f x = w v y = u f z = R
Assertion ov3 A H B H C H D H A B F C D = S

Proof

Step Hyp Ref Expression
1 ov3.1 S V
2 ov3.2 w = A v = B u = C f = D R = S
3 ov3.3 F = x y z | x H × H y H × H w v u f x = w v y = u f z = R
4 1 isseti z z = S
5 nfv z A H B H C H D H
6 nfcv _ z A B
7 nfoprab3 _ z x y z | x H × H y H × H w v u f x = w v y = u f z = R
8 3 7 nfcxfr _ z F
9 nfcv _ z C D
10 6 8 9 nfov _ z A B F C D
11 10 nfeq1 z A B F C D = S
12 2 eqeq2d w = A v = B u = C f = D z = R z = S
13 12 copsex4g A H B H C H D H w v u f A B = w v C D = u f z = R z = S
14 opelxpi A H B H A B H × H
15 opelxpi C H D H C D H × H
16 nfcv _ x A B
17 nfcv _ y A B
18 nfcv _ y C D
19 nfv x w v u f A B = w v y = u f z = R
20 nfoprab1 _ x x y z | x H × H y H × H w v u f x = w v y = u f z = R
21 3 20 nfcxfr _ x F
22 nfcv _ x y
23 16 21 22 nfov _ x A B F y
24 23 nfeq1 x A B F y = z
25 19 24 nfim x w v u f A B = w v y = u f z = R A B F y = z
26 nfv y w v u f A B = w v C D = u f z = R
27 nfoprab2 _ y x y z | x H × H y H × H w v u f x = w v y = u f z = R
28 3 27 nfcxfr _ y F
29 17 28 18 nfov _ y A B F C D
30 29 nfeq1 y A B F C D = z
31 26 30 nfim y w v u f A B = w v C D = u f z = R A B F C D = z
32 eqeq1 x = A B x = w v A B = w v
33 32 anbi1d x = A B x = w v y = u f A B = w v y = u f
34 33 anbi1d x = A B x = w v y = u f z = R A B = w v y = u f z = R
35 34 4exbidv x = A B w v u f x = w v y = u f z = R w v u f A B = w v y = u f z = R
36 oveq1 x = A B x F y = A B F y
37 36 eqeq1d x = A B x F y = z A B F y = z
38 35 37 imbi12d x = A B w v u f x = w v y = u f z = R x F y = z w v u f A B = w v y = u f z = R A B F y = z
39 eqeq1 y = C D y = u f C D = u f
40 39 anbi2d y = C D A B = w v y = u f A B = w v C D = u f
41 40 anbi1d y = C D A B = w v y = u f z = R A B = w v C D = u f z = R
42 41 4exbidv y = C D w v u f A B = w v y = u f z = R w v u f A B = w v C D = u f z = R
43 oveq2 y = C D A B F y = A B F C D
44 43 eqeq1d y = C D A B F y = z A B F C D = z
45 42 44 imbi12d y = C D w v u f A B = w v y = u f z = R A B F y = z w v u f A B = w v C D = u f z = R A B F C D = z
46 moeq * z z = R
47 46 mosubop * z u f y = u f z = R
48 47 mosubop * z w v x = w v u f y = u f z = R
49 anass x = w v y = u f z = R x = w v y = u f z = R
50 49 2exbii u f x = w v y = u f z = R u f x = w v y = u f z = R
51 19.42vv u f x = w v y = u f z = R x = w v u f y = u f z = R
52 50 51 bitri u f x = w v y = u f z = R x = w v u f y = u f z = R
53 52 2exbii w v u f x = w v y = u f z = R w v x = w v u f y = u f z = R
54 53 mobii * z w v u f x = w v y = u f z = R * z w v x = w v u f y = u f z = R
55 48 54 mpbir * z w v u f x = w v y = u f z = R
56 55 a1i x H × H y H × H * z w v u f x = w v y = u f z = R
57 56 3 ovidi x H × H y H × H w v u f x = w v y = u f z = R x F y = z
58 16 17 18 25 31 38 45 57 vtocl2gaf A B H × H C D H × H w v u f A B = w v C D = u f z = R A B F C D = z
59 14 15 58 syl2an A H B H C H D H w v u f A B = w v C D = u f z = R A B F C D = z
60 13 59 sylbird A H B H C H D H z = S A B F C D = z
61 eqeq2 z = S A B F C D = z A B F C D = S
62 60 61 mpbidi A H B H C H D H z = S A B F C D = S
63 5 11 62 exlimd A H B H C H D H z z = S A B F C D = S
64 4 63 mpi A H B H C H D H A B F C D = S