Metamath Proof Explorer


Theorem ov6g

Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006)

Ref Expression
Hypotheses ov6g.1 xy=ABR=S
ov6g.2 F=xyz|xyCz=R
Assertion ov6g AGBHABCSJAFB=S

Proof

Step Hyp Ref Expression
1 ov6g.1 xy=ABR=S
2 ov6g.2 F=xyz|xyCz=R
3 df-ov AFB=FAB
4 eqid S=S
5 biidd x=Ay=BS=SS=S
6 5 copsex2g AGBHxyAB=xyS=SS=S
7 4 6 mpbiri AGBHxyAB=xyS=S
8 7 3adant3 AGBHABCxyAB=xyS=S
9 8 adantr AGBHABCSJxyAB=xyS=S
10 eqeq1 w=ABw=xyAB=xy
11 10 anbi1d w=ABw=xyz=RAB=xyz=R
12 1 eqeq2d xy=ABz=Rz=S
13 12 eqcoms AB=xyz=Rz=S
14 13 pm5.32i AB=xyz=RAB=xyz=S
15 11 14 bitrdi w=ABw=xyz=RAB=xyz=S
16 15 2exbidv w=ABxyw=xyz=RxyAB=xyz=S
17 eqeq1 z=Sz=SS=S
18 17 anbi2d z=SAB=xyz=SAB=xyS=S
19 18 2exbidv z=SxyAB=xyz=SxyAB=xyS=S
20 moeq *zz=R
21 20 mosubop *zxyw=xyz=R
22 21 a1i wC*zxyw=xyz=R
23 dfoprab2 xyz|xyCz=R=wz|xyw=xyxyCz=R
24 eleq1 w=xywCxyC
25 24 anbi1d w=xywCz=RxyCz=R
26 25 pm5.32i w=xywCz=Rw=xyxyCz=R
27 an12 w=xywCz=RwCw=xyz=R
28 26 27 bitr3i w=xyxyCz=RwCw=xyz=R
29 28 2exbii xyw=xyxyCz=RxywCw=xyz=R
30 19.42vv xywCw=xyz=RwCxyw=xyz=R
31 29 30 bitri xyw=xyxyCz=RwCxyw=xyz=R
32 31 opabbii wz|xyw=xyxyCz=R=wz|wCxyw=xyz=R
33 2 23 32 3eqtri F=wz|wCxyw=xyz=R
34 16 19 22 33 fvopab3ig ABCSJxyAB=xyS=SFAB=S
35 34 3ad2antl3 AGBHABCSJxyAB=xyS=SFAB=S
36 9 35 mpd AGBHABCSJFAB=S
37 3 36 eqtrid AGBHABCSJAFB=S