Metamath Proof Explorer


Theorem nfoprab1

Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Assertion nfoprab1 𝑥 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { 𝑤 ∣ ∃ 𝑥𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 ) }
2 nfe1 𝑥𝑥𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 )
3 2 nfab 𝑥 { 𝑤 ∣ ∃ 𝑥𝑦𝑧 ( 𝑤 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 ) }
4 1 3 nfcxfr 𝑥 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }