Metamath Proof Explorer


Theorem addcnlem

Description: Lemma for addcn , subcn , and mulcn . (Contributed by Mario Carneiro, 5-May-2014) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses addcn.j J=TopOpenfld
addcn.2 +˙:×
addcn.3 a+bcy+z+uvub<yvc<zu+˙vb+˙c<a
Assertion addcnlem +˙J×tJCnJ

Proof

Step Hyp Ref Expression
1 addcn.j J=TopOpenfld
2 addcn.2 +˙:×
3 addcn.3 a+bcy+z+uvub<yvc<zu+˙vb+˙c<a
4 3 3coml bca+y+z+uvub<yvc<zu+˙vb+˙c<a
5 ifcl y+z+ifyzyz+
6 5 adantl bca+y+z+ifyzyz+
7 simpll1 bca+y+z+uvb
8 simprl bca+y+z+uvu
9 eqid abs=abs
10 9 cnmetdval bubabsu=bu
11 abssub bubu=ub
12 10 11 eqtrd bubabsu=ub
13 7 8 12 syl2anc bca+y+z+uvbabsu=ub
14 13 breq1d bca+y+z+uvbabsu<ifyzyzub<ifyzyz
15 8 7 subcld bca+y+z+uvub
16 15 abscld bca+y+z+uvub
17 simplrl bca+y+z+uvy+
18 17 rpred bca+y+z+uvy
19 simplrr bca+y+z+uvz+
20 19 rpred bca+y+z+uvz
21 ltmin ubyzub<ifyzyzub<yub<z
22 16 18 20 21 syl3anc bca+y+z+uvub<ifyzyzub<yub<z
23 14 22 bitrd bca+y+z+uvbabsu<ifyzyzub<yub<z
24 simpl ub<yub<zub<y
25 23 24 syl6bi bca+y+z+uvbabsu<ifyzyzub<y
26 simpll2 bca+y+z+uvc
27 simprr bca+y+z+uvv
28 9 cnmetdval cvcabsv=cv
29 abssub cvcv=vc
30 28 29 eqtrd cvcabsv=vc
31 26 27 30 syl2anc bca+y+z+uvcabsv=vc
32 31 breq1d bca+y+z+uvcabsv<ifyzyzvc<ifyzyz
33 27 26 subcld bca+y+z+uvvc
34 33 abscld bca+y+z+uvvc
35 ltmin vcyzvc<ifyzyzvc<yvc<z
36 34 18 20 35 syl3anc bca+y+z+uvvc<ifyzyzvc<yvc<z
37 32 36 bitrd bca+y+z+uvcabsv<ifyzyzvc<yvc<z
38 simpr vc<yvc<zvc<z
39 37 38 syl6bi bca+y+z+uvcabsv<ifyzyzvc<z
40 25 39 anim12d bca+y+z+uvbabsu<ifyzyzcabsv<ifyzyzub<yvc<z
41 2 fovcl bcb+˙c
42 7 26 41 syl2anc bca+y+z+uvb+˙c
43 2 fovcl uvu+˙v
44 43 adantl bca+y+z+uvu+˙v
45 9 cnmetdval b+˙cu+˙vb+˙cabsu+˙v=b+˙cu+˙v
46 abssub b+˙cu+˙vb+˙cu+˙v=u+˙vb+˙c
47 45 46 eqtrd b+˙cu+˙vb+˙cabsu+˙v=u+˙vb+˙c
48 42 44 47 syl2anc bca+y+z+uvb+˙cabsu+˙v=u+˙vb+˙c
49 48 breq1d bca+y+z+uvb+˙cabsu+˙v<au+˙vb+˙c<a
50 49 biimprd bca+y+z+uvu+˙vb+˙c<ab+˙cabsu+˙v<a
51 40 50 imim12d bca+y+z+uvub<yvc<zu+˙vb+˙c<ababsu<ifyzyzcabsv<ifyzyzb+˙cabsu+˙v<a
52 51 ralimdvva bca+y+z+uvub<yvc<zu+˙vb+˙c<auvbabsu<ifyzyzcabsv<ifyzyzb+˙cabsu+˙v<a
53 breq2 x=ifyzyzbabsu<xbabsu<ifyzyz
54 breq2 x=ifyzyzcabsv<xcabsv<ifyzyz
55 53 54 anbi12d x=ifyzyzbabsu<xcabsv<xbabsu<ifyzyzcabsv<ifyzyz
56 55 imbi1d x=ifyzyzbabsu<xcabsv<xb+˙cabsu+˙v<ababsu<ifyzyzcabsv<ifyzyzb+˙cabsu+˙v<a
57 56 2ralbidv x=ifyzyzuvbabsu<xcabsv<xb+˙cabsu+˙v<auvbabsu<ifyzyzcabsv<ifyzyzb+˙cabsu+˙v<a
58 57 rspcev ifyzyz+uvbabsu<ifyzyzcabsv<ifyzyzb+˙cabsu+˙v<ax+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
59 6 52 58 syl6an bca+y+z+uvub<yvc<zu+˙vb+˙c<ax+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
60 59 rexlimdvva bca+y+z+uvub<yvc<zu+˙vb+˙c<ax+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
61 4 60 mpd bca+x+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
62 61 rgen3 bca+x+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
63 cnxmet abs∞Met
64 1 cnfldtopn J=MetOpenabs
65 64 64 64 txmetcn abs∞Metabs∞Metabs∞Met+˙J×tJCnJ+˙:×bca+x+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
66 63 63 63 65 mp3an +˙J×tJCnJ+˙:×bca+x+uvbabsu<xcabsv<xb+˙cabsu+˙v<a
67 2 62 66 mpbir2an +˙J×tJCnJ