Description: Lemma for addcn , subcn , and mulcn . (Contributed by Mario Carneiro, 5-May-2014) (Proof shortened by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addcn.j | |
|
addcn.2 | |
||
addcn.3 | |
||
Assertion | addcnlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcn.j | |
|
2 | addcn.2 | |
|
3 | addcn.3 | |
|
4 | 3 | 3coml | |
5 | ifcl | |
|
6 | 5 | adantl | |
7 | simpll1 | |
|
8 | simprl | |
|
9 | eqid | |
|
10 | 9 | cnmetdval | |
11 | abssub | |
|
12 | 10 11 | eqtrd | |
13 | 7 8 12 | syl2anc | |
14 | 13 | breq1d | |
15 | 8 7 | subcld | |
16 | 15 | abscld | |
17 | simplrl | |
|
18 | 17 | rpred | |
19 | simplrr | |
|
20 | 19 | rpred | |
21 | ltmin | |
|
22 | 16 18 20 21 | syl3anc | |
23 | 14 22 | bitrd | |
24 | simpl | |
|
25 | 23 24 | syl6bi | |
26 | simpll2 | |
|
27 | simprr | |
|
28 | 9 | cnmetdval | |
29 | abssub | |
|
30 | 28 29 | eqtrd | |
31 | 26 27 30 | syl2anc | |
32 | 31 | breq1d | |
33 | 27 26 | subcld | |
34 | 33 | abscld | |
35 | ltmin | |
|
36 | 34 18 20 35 | syl3anc | |
37 | 32 36 | bitrd | |
38 | simpr | |
|
39 | 37 38 | syl6bi | |
40 | 25 39 | anim12d | |
41 | 2 | fovcl | |
42 | 7 26 41 | syl2anc | |
43 | 2 | fovcl | |
44 | 43 | adantl | |
45 | 9 | cnmetdval | |
46 | abssub | |
|
47 | 45 46 | eqtrd | |
48 | 42 44 47 | syl2anc | |
49 | 48 | breq1d | |
50 | 49 | biimprd | |
51 | 40 50 | imim12d | |
52 | 51 | ralimdvva | |
53 | breq2 | |
|
54 | breq2 | |
|
55 | 53 54 | anbi12d | |
56 | 55 | imbi1d | |
57 | 56 | 2ralbidv | |
58 | 57 | rspcev | |
59 | 6 52 58 | syl6an | |
60 | 59 | rexlimdvva | |
61 | 4 60 | mpd | |
62 | 61 | rgen3 | |
63 | cnxmet | |
|
64 | 1 | cnfldtopn | |
65 | 64 64 64 | txmetcn | |
66 | 63 63 63 65 | mp3an | |
67 | 2 62 66 | mpbir2an | |