Metamath Proof Explorer


Theorem mulcn2

Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion mulcn2 A+BCy+z+uvuB<yvC<zuvBC<A

Proof

Step Hyp Ref Expression
1 rphalfcl A+A2+
2 1 3ad2ant1 A+BCA2+
3 abscl CC
4 3 3ad2ant3 A+BCC
5 abscl BB
6 5 3ad2ant2 A+BCB
7 1re 1
8 readdcl B1B+1
9 6 7 8 sylancl A+BCB+1
10 absge0 B0B
11 0lt1 0<1
12 addgegt0 B10B0<10<B+1
13 12 an4s B0B10<10<B+1
14 7 11 13 mpanr12 B0B0<B+1
15 5 10 14 syl2anc B0<B+1
16 15 3ad2ant2 A+BC0<B+1
17 9 16 elrpd A+BCB+1+
18 2 17 rpdivcld A+BCA2B+1+
19 18 rpred A+BCA2B+1
20 4 19 readdcld A+BCC+A2B+1
21 absge0 C0C
22 21 3ad2ant3 A+BC0C
23 elrp A2B+1+A2B+10<A2B+1
24 addgegt0 CA2B+10C0<A2B+10<C+A2B+1
25 24 an4s C0CA2B+10<A2B+10<C+A2B+1
26 23 25 sylan2b C0CA2B+1+0<C+A2B+1
27 4 22 18 26 syl21anc A+BC0<C+A2B+1
28 20 27 elrpd A+BCC+A2B+1+
29 2 28 rpdivcld A+BCA2C+A2B+1+
30 simprl A+BCuvu
31 simpl2 A+BCuvB
32 30 31 subcld A+BCuvuB
33 32 abscld A+BCuvuB
34 2 adantr A+BCuvA2+
35 34 rpred A+BCuvA2
36 28 adantr A+BCuvC+A2B+1+
37 33 35 36 ltmuldivd A+BCuvuBC+A2B+1<A2uB<A2C+A2B+1
38 simprr A+BCuvv
39 simpl3 A+BCuvC
40 38 39 abs2difd A+BCuvvCvC
41 38 abscld A+BCuvv
42 4 adantr A+BCuvC
43 41 42 resubcld A+BCuvvC
44 38 39 subcld A+BCuvvC
45 44 abscld A+BCuvvC
46 19 adantr A+BCuvA2B+1
47 lelttr vCvCA2B+1vCvCvC<A2B+1vC<A2B+1
48 43 45 46 47 syl3anc A+BCuvvCvCvC<A2B+1vC<A2B+1
49 40 48 mpand A+BCuvvC<A2B+1vC<A2B+1
50 41 42 46 ltsubadd2d A+BCuvvC<A2B+1v<C+A2B+1
51 49 50 sylibd A+BCuvvC<A2B+1v<C+A2B+1
52 20 adantr A+BCuvC+A2B+1
53 ltle vC+A2B+1v<C+A2B+1vC+A2B+1
54 41 52 53 syl2anc A+BCuvv<C+A2B+1vC+A2B+1
55 51 54 syld A+BCuvvC<A2B+1vC+A2B+1
56 32 absge0d A+BCuv0uB
57 lemul2a vC+A2B+1uB0uBvC+A2B+1uBvuBC+A2B+1
58 57 ex vC+A2B+1uB0uBvC+A2B+1uBvuBC+A2B+1
59 41 52 33 56 58 syl112anc A+BCuvvC+A2B+1uBvuBC+A2B+1
60 33 41 remulcld A+BCuvuBv
61 33 52 remulcld A+BCuvuBC+A2B+1
62 lelttr uBvuBC+A2B+1A2uBvuBC+A2B+1uBC+A2B+1<A2uBv<A2
63 60 61 35 62 syl3anc A+BCuvuBvuBC+A2B+1uBC+A2B+1<A2uBv<A2
64 63 expd A+BCuvuBvuBC+A2B+1uBC+A2B+1<A2uBv<A2
65 55 59 64 3syld A+BCuvvC<A2B+1uBC+A2B+1<A2uBv<A2
66 65 com23 A+BCuvuBC+A2B+1<A2vC<A2B+1uBv<A2
67 37 66 sylbird A+BCuvuB<A2C+A2B+1vC<A2B+1uBv<A2
68 67 impd A+BCuvuB<A2C+A2B+1vC<A2B+1uBv<A2
69 32 38 absmuld A+BCuvuBv=uBv
70 30 31 38 subdird A+BCuvuBv=uvBv
71 70 fveq2d A+BCuvuBv=uvBv
72 69 71 eqtr3d A+BCuvuBv=uvBv
73 72 breq1d A+BCuvuBv<A2uvBv<A2
74 68 73 sylibd A+BCuvuB<A2C+A2B+1vC<A2B+1uvBv<A2
75 17 adantr A+BCuvB+1+
76 45 35 75 ltmuldiv2d A+BCuvB+1vC<A2vC<A2B+1
77 31 38 39 subdid A+BCuvBvC=BvBC
78 77 fveq2d A+BCuvBvC=BvBC
79 31 44 absmuld A+BCuvBvC=BvC
80 78 79 eqtr3d A+BCuvBvBC=BvC
81 31 abscld A+BCuvB
82 81 lep1d A+BCuvBB+1
83 9 adantr A+BCuvB+1
84 abscl vCvC
85 absge0 vC0vC
86 84 85 jca vCvC0vC
87 lemul1a BB+1vC0vCBB+1BvCB+1vC
88 87 ex BB+1vC0vCBB+1BvCB+1vC
89 86 88 syl3an3 BB+1vCBB+1BvCB+1vC
90 81 83 44 89 syl3anc A+BCuvBB+1BvCB+1vC
91 82 90 mpd A+BCuvBvCB+1vC
92 80 91 eqbrtrd A+BCuvBvBCB+1vC
93 31 38 mulcld A+BCuvBv
94 31 39 mulcld A+BCuvBC
95 93 94 subcld A+BCuvBvBC
96 95 abscld A+BCuvBvBC
97 83 45 remulcld A+BCuvB+1vC
98 lelttr BvBCB+1vCA2BvBCB+1vCB+1vC<A2BvBC<A2
99 96 97 35 98 syl3anc A+BCuvBvBCB+1vCB+1vC<A2BvBC<A2
100 92 99 mpand A+BCuvB+1vC<A2BvBC<A2
101 76 100 sylbird A+BCuvvC<A2B+1BvBC<A2
102 101 adantld A+BCuvuB<A2C+A2B+1vC<A2B+1BvBC<A2
103 74 102 jcad A+BCuvuB<A2C+A2B+1vC<A2B+1uvBv<A2BvBC<A2
104 mulcl uvuv
105 104 adantl A+BCuvuv
106 simpl1 A+BCuvA+
107 106 rpred A+BCuvA
108 abs3lem uvBCBvAuvBv<A2BvBC<A2uvBC<A
109 105 94 93 107 108 syl22anc A+BCuvuvBv<A2BvBC<A2uvBC<A
110 103 109 syld A+BCuvuB<A2C+A2B+1vC<A2B+1uvBC<A
111 110 ralrimivva A+BCuvuB<A2C+A2B+1vC<A2B+1uvBC<A
112 breq2 y=A2C+A2B+1uB<yuB<A2C+A2B+1
113 112 anbi1d y=A2C+A2B+1uB<yvC<zuB<A2C+A2B+1vC<z
114 113 imbi1d y=A2C+A2B+1uB<yvC<zuvBC<AuB<A2C+A2B+1vC<zuvBC<A
115 114 2ralbidv y=A2C+A2B+1uvuB<yvC<zuvBC<AuvuB<A2C+A2B+1vC<zuvBC<A
116 breq2 z=A2B+1vC<zvC<A2B+1
117 116 anbi2d z=A2B+1uB<A2C+A2B+1vC<zuB<A2C+A2B+1vC<A2B+1
118 117 imbi1d z=A2B+1uB<A2C+A2B+1vC<zuvBC<AuB<A2C+A2B+1vC<A2B+1uvBC<A
119 118 2ralbidv z=A2B+1uvuB<A2C+A2B+1vC<zuvBC<AuvuB<A2C+A2B+1vC<A2B+1uvBC<A
120 115 119 rspc2ev A2C+A2B+1+A2B+1+uvuB<A2C+A2B+1vC<A2B+1uvBC<Ay+z+uvuB<yvC<zuvBC<A
121 29 18 111 120 syl3anc A+BCy+z+uvuB<yvC<zuvBC<A